Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Inflammation ; 46(6): 2089-2101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37436644

RESUMO

Cysteine-cysteine chemokine receptor type 5 (CCR5) is thought to play an important role in the trafficking of lymphoid cells but has recently also been associated with AMPK signaling pathways that are implicated in energy metabolism in skeletal muscle. We hypothesized that genetic deletions of CCR5 would alter mitochondria content and exercise performance in mice. CCR5-/- and wild-type mice with the same genetic background were subjected to endurance exercise and grip strength tests. The soleus muscle was stained with immunofluorescence for myosin heavy chain 7 (MYH7) and succinate dehydrogenase (SDH) analysis as well as the expression of genes associated with muscle atrophy and mitochondrial oxidative phosphorylation were measured using qPCR. Although there were no differences in the weight of the soleus muscle between the CCR5-/- group and the wild-type mice, the CCR5-/- mice showed the following muscular dysfunctions: (i) decreased MYH7 percentage and cross-section area, (ii) higher myostatin and atrogin-1 mRNA levels, (iii) dropped expression of mitochondrial DNA-encoded electron respiratory chain genes (cytochrome B, cytochrome c oxidase subunit III, and ATP synthase subunit 6) as well as mitochondrial generation genes (PPARγ and PGC-1α), and (iv) lower SDH activity and exercise performance when compared with wild-type mice. In addition, genes associated with mitochondrial biogenesis (PGC-1α, PPARγ, and MFN2) and mitochondrial complex (ND4 and Cytb) were upregulated when the skeletal muscle cell line C2C12 was exposed to cysteine-cysteine chemokine ligand 4 (a ligand of CCR5) in vitro. These findings suggested that attenuation of endurance exercise performance is related to the loss of mitochondrial content and lower SDH activity of soleus muscle in CCR5 knockout mice. The present study provides evidence indicating that the chemokine receptor CCR5 might modulate the skeletal muscle metabolic energy system during exercise.


Assuntos
Cisteína , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/metabolismo , Cisteína/metabolismo , Receptores de Quimiocinas/metabolismo , PPAR gama/metabolismo , Ligantes , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
2.
J Chin Med Assoc ; 86(1): 80-87, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194166

RESUMO

BACKGROUND: Iron is a vital trace element for energy production and oxygen transportation; importantly, it is essential to athletic performance. Maintaining iron balance is tightly controlled at systemic and cellular levels. This study aimed to determine serum iron tests, hepcidin levels, and cellular iron import and export activities in peripheral blood mononuclear cells (PBMCs) in ultramarathon runners to elucidate the association of systemic inflammation response and iron metabolism. METHODS: Sixteen amateur runners were enrolled. Blood samples were taken 1 week before, immediately, and 24 h after the run. Plasma hepcidin levels were measured by enzyme-linked immunosorbent assay. The expression levels of divalent metal iron transporter 1 (DMT1), ZRT/IRT-like protein 14 (ZIP14), transferrin receptor 1 (TfR1), and ferroportin (FPN) in PBMCs were measured using real-time quantitative reverse transcription-polymerase chain reaction. RESULTS: Serum iron concentrations and transferrin saturation significantly decreased immediately after the race and dramatically recovered 24 h post-race. Serum ferritin levels had a statistically significant rise immediately after the race and remained high 24 h after the completion of the race. Ultramarathons were associated with increased plasma interleukin-6 concentrations corresponding to the state of severe systemic inflammation and therefore boosted plasma hepcidin levels. The expression levels of DMT1 and FPN mRNA were markedly decreased immediately and 24 h after the race. The ZIP14 and TfR1 mRNA expression in PBMCs significantly decreased immediately after the race and returned to the baseline level at 24 h post-race. Positive significant correlations were observed between plasma hepcidin and ferritin levels. CONCLUSION: Iron homeostasis and systemic inflammatory response are closely interconnected. Cellular iron import and export mRNA activities in PBMCs were acutely inhibited during an ultramarathon.


Assuntos
Ferro , Corrida de Maratona , Humanos , Ferritinas , Hepcidinas/sangue , Hepcidinas/metabolismo , Inflamação/etiologia , Ferro/metabolismo , Leucócitos Mononucleares/metabolismo , Corrida de Maratona/fisiologia , RNA Mensageiro
3.
Front Pharmacol ; 13: 950012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120361

RESUMO

Background/Aim: Since 2019, the COVID-19 pandemic has been a devastating disease affecting global health to a great extent. Some countries have added on herbal medicines as a complementary treatment for combating COVID-19 due to the urgency of stopping the spread of this viral disease. However, whether these herbal medicines are effective is uncertain. This systematic review and meta-analysis aimed to evaluate the effects of herbal medicine combined therapy in the treatment of COVID-19. Methods: A literature search was performed following the PRISMA Statement and without language restrictions. Seven databases were searched from inception through December 2021. All selected studies were randomized clinical trials (RCTs). Comparing the effects of herbal medicine combined therapy with conventional western medicine, including improvement of clinical symptoms, chest CT images, viral conversion rate, C-reactive protein (CRP) and interleukin 6. Cochrane criteria were applied to examine the methodological quality of the enrolled trials; and meta-analysis software (RevMan 5.4.1) was used for data analysis. Results: In total, the data of 5,417 participants from 40 trials were included in this systematic review; and 28 trials were qualified for meta-analysis. The trials had medium-to-high quality based on GRADE system. Meta-analysis showed that combining herbal medicine vs conventional treatment in 1) coughing (1.43 95% CI:1.21, 1.71, p = 0.0001), 2) fever (1.09 95% CI:1.00, 1.19, p = 0.06), 3) fatigue (1.21 95% CI:1.10, 1.33, p = 0.0001); 4) CT images (1.26 95% CI:1.19, 1.34, P ≤ 0.00001), 5) viral conversion rates (1.22 95% CI:1.06, 1.40, p = 0.005) and 6) viral conversion times (-3.72 95% CI: -6.05, -1.40, p = 0.002), 7) IL6 change (1.97 95% CI: -0.72, 4.66, p = 0.15) and 8) CRP change (-7.92 95% CI: -11.30, -4.53, P ≤ 0.00001). Conclusion: Herbal medicine combined therapy significantly reduces COVID-19 clinical symptoms, improving CT images and viral conversion rates. Reported adverse events are mild. However, for certain biases in the included studies, and the need for further study on effective components of herbal medicine. Further large trials with better randomized design are warranted to definite a more definite role of herbal medicine.

4.
Am J Transl Res ; 14(2): 1234-1245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273725

RESUMO

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.

5.
Blood Adv ; 6(4): 1095-1099, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516632

RESUMO

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has an essential role in regulating adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Assuntos
Hematopoese , Mesonefro , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mamíferos
6.
Front Nutr ; 8: 762363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901113

RESUMO

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.

8.
Am J Transl Res ; 12(3): 1016-1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269731

RESUMO

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is a heritable epigenetic mark, participating in numerous physiological processes. DNMT3A is of particular relevance to hematopoietic differentiation, because DNMT3A mutations are strongly related to hematopoietic malignancies. Additionally, DNMT3A deficiency has been reported to increase the hematopoietic stem cell pool by limiting their differentiation. Our previous study demonstrated that complete loss of DNMT3A resulted in anemia, while DNMT3A haploinsufficiency caused an elevated population of erythrocytes in the content of oncogenic KRAS. Since erythropoiesis is tightly regulated via the erythropoietin (EPO)-mediated RAS-RAF-MEK-ERK1/2 pathway, the question arises whether DNMT3A cooperates with RAS signaling to modulate erythropoiesis. Human leukemia cell lines were used, with differentiation capabilities towards megakaryocyte and erythroid lineages. Overexpression of DNMT3A was found to enhance erythrocytic differentiation of K562 cells, while DNMT3A knockdown suppressed differentiation. Furthermore, higher DNMT3A expression was detected in late-stage mouse erythroblasts along with the DNMT3A translocation to the nucleus. Further studies demonstrated that both ERK1/2-DNMT3A interaction and serine-255 phosphorylation in DNMT3A led to DNMT3A translocation into the nucleus, and modulated erythrocytic differentiation. Our results not only explore the critical role of DNMT3A in erythropoiesis, but also provide a new insight into ERK1/2-DNMT3A interaction in the hematopoietic system.

10.
Leukemia ; 33(3): 671-685, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30206308

RESUMO

The Notch signaling pathway contributes to the pathogenesis of a wide spectrum of human cancers, including hematopoietic malignancies. Its functions are highly dependent on the specific cellular context. Gain-of-function NOTCH1 mutations are prevalent in human T-cell leukemia, while loss of Notch signaling is reported in myeloid leukemias. Here, we report a novel oncogenic function of Notch signaling in oncogenic Kras-induced myeloproliferative neoplasm (MPN). We find that downregulation of Notch signaling in hematopoietic cells via DNMAML expression or Pofut1 deletion significantly blocks MPN development in KrasG12D mice in a cell-autonomous manner. Further mechanistic studies indicate that inhibition of Notch signaling upregulates Dusp1, a dual phosphatase that inactivates p-ERK, and downregulates cytokine-evoked ERK activation in KrasG12D cells. Moreover, mitochondrial metabolism is greatly enhanced in KrasG12D cells but significantly reprogrammed by DNMAML close to that in control cells. Consequently, cell proliferation and expanded myeloid compartment in KrasG12D mice are significantly reduced. Consistent with these findings, combined inhibition of the MEK/ERK pathway and mitochondrial oxidative phosphorylation effectively inhibited the growth of human and mouse leukemia cells in vitro. Our study provides a strong rational to target both ERK signaling and aberrant metabolism in oncogenic Ras-driven myeloid leukemia.


Assuntos
Regulação para Baixo/genética , Leucemia Mieloide/genética , Sistema de Sinalização das MAP Quinases/genética , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Notch/genética , Transdução de Sinais/genética , Animais , Proliferação de Células/genética , Citocinas/genética , Fosfatase 1 de Especificidade Dupla/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mutação/genética , Fosforilação Oxidativa , Regulação para Cima/genética
11.
Am J Transl Res ; 9(3): 1326-1334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386358

RESUMO

Mutations in DNA methyltransferase 3A (DNMT3A) are prevalent in various myeloid and lymphoid malignancies. The most common DNMT3A R882 mutations inhibit methyltransferase activity of the remaining wild-type DNMT3A proteins at a heterozygous state due to their dominant-negative activity. Reports and COSMIC database analysis reveal significantly different frequencies of R882 mutations in myeloid versus T-cell malignancies, inspiring us to investigate whether downregulation of DNMT3A regulates malignancies of different lineages in a dose-dependent manner. In a competitive transplant setting, the survival of recipients with KrasG12D/+ ; Dnmt3a+/- bone marrow (BM) cells was significantly shortened than that of recipients with KrasG12D/+ cells. Moreover, all of the recipients with KrasG12D/+ ; Dnmt3a+/- cells developed a lethal T-cell acute lymphoblastic leukemia (T-ALL) without significant myeloproliferative neoplasm (MPN) phenotypes, while ~20% of recipients with KrasG12D/+ cells developed MPN with or without T-ALL. This is in sharp contrast to the recipients with KrasG12D/+ ; Dnmt3a-/- cells, in which ~60% developed a lethal myeloid malignancy (MPN or acute myeloid leukemia [AML]). Our data suggest that in the context of oncogenic Kras, loss of Dnmt3a promotes myeloid malignancies, while Dnmt3a haploinsufficiency induces T-ALL. This dose-dependent phenotype is highly consistent with the prevalence of DNMT3A R882 mutations in AML versus T-ALL in human.

12.
Sci Rep ; 7: 42883, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220825

RESUMO

The Notch1 pathway plays important roles in modulating erythroid and megakaryocyte differentiation. To screen the Notch1-related genes that regulate differentiation fate of K562 and HEL cells, the expression of transient receptor potential ankyrin 1 (TRPA1) was induced by Notch1 receptor intracellular domain (N1IC), the activated form of Notch1 receptor. N1IC and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1) bound to TRPA1 promoter region to regulate transcription in K562 cells. Transactivation of TRPA1 promoter by N1IC depended on the methylation status of TRPA1 promoter. N1IC and Ets-1 suppressed the DNA methyltransferase 3B (DNMT3B) level in K562 cells. Inhibition of TRPA1 expression after Notch1 knockdown could be attenuated by nanaomycin A, an inhibitor of DNMT3B, in K562 and HEL cells. Functionally, hemin-induced erythroid differentiation could be suppressed by TRPA1, and the reduction of erythroid differentiation of both cells by N1IC and Ets-1 occurred via TRPA1. However, PMA-induced megakaryocyte differentiation could be enhanced by TRPA1, and the surface markers of megakaryocytes could be elevated by nanaomycin A. Megakaryocyte differentiation could be reduced by Notch1 or Ets-1 knockdown and relieved by TRPA1 overexpression. The results suggest that Notch1 and TRPA1 might be critical modulators that control the fate of erythroid and megakaryocyte differentiation.


Assuntos
Diferenciação Celular , Receptor Notch1/metabolismo , Canal de Cátion TRPA1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Células K562 , Megacariócitos/citologia , Megacariócitos/metabolismo , Naftoquinonas/farmacologia , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Canal de Cátion TRPA1/análise , Canal de Cátion TRPA1/genética , Ativação Transcricional , DNA Metiltransferase 3B
13.
Blood ; 129(3): 358-370, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27815262

RESUMO

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Assuntos
Transformação Celular Neoplásica/genética , GTP Fosfo-Hidrolases/genética , Leucemia Mieloide Aguda/patologia , Células Progenitoras de Megacariócitos e Eritrócitos/patologia , Proteínas de Membrana/genética , Proteína Supressora de Tumor p53/genética , Animais , Transplante de Medula Óssea , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência
14.
Small GTPases ; 8(4): 233-236, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27449543

RESUMO

Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.


Assuntos
Genes ras/genética , Animais , Humanos , Mutação
15.
Sci Adv ; 1(8): e1500503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601269

RESUMO

Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (-77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples -77 function from proto-oncogene deregulation. The -77(-/-) mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The -77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5(-/-) embryos, hematopoietic stem cell genesis was unaffected in -77(-/-) embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes.

16.
J Clin Invest ; 124(6): 2762-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24812670

RESUMO

Overactive RAS signaling is prevalent in juvenile myelomonocytic leukemia (JMML) and the myeloproliferative variant of chronic myelomonocytic leukemia (MP-CMML) in humans, and both are refractory to conventional chemotherapy. Conditional activation of a constitutively active oncogenic Nras (NrasG12D/G12D) in murine hematopoietic cells promotes an acute myeloproliferative neoplasm (MPN) that recapitulates many features of JMML and MP-CMML. We found that NrasG12D/G12D-expressing HSCs, which serve as JMML/MP-CMML-initiating cells, show strong hyperactivation of ERK1/2, promoting hyperproliferation and depletion of HSCs and expansion of downstream progenitors. Inhibition of the MEK pathway alone prolonged the presence of NrasG12D/G12D-expressing HSCs but failed to restore their proper function. Consequently, approximately 60% of NrasG12D/G12D mice treated with MEK inhibitor alone died within 20 weeks, and the remaining animals continued to display JMML/MP-CMML-like phenotypes. In contrast, combined inhibition of MEK and JAK/STAT signaling, which is commonly hyperactivated in human and mouse CMML, potently inhibited human and mouse CMML cell growth in vitro, rescued mutant NrasG12D/G12D-expressing HSC function in vivo, and promoted long-term survival without evident disease manifestation in NrasG12D/G12D animals. These results provide a strong rationale for further exploration of combined targeting of MEK/ERK and JAK/STAT in treating patients with JMML and MP-CMML.


Assuntos
Janus Quinases/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Genes ras , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/enzimologia , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/enzimologia , Leucemia Mielomonocítica Juvenil/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Transtornos Mieloproliferativos/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 111(12): E1091-100, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616499

RESUMO

The unremitting demand to replenish differentiated cells in tissues requires efficient mechanisms to generate and regulate stem and progenitor cells. Although master regulatory transcription factors, including GATA binding protein-2 (GATA-2), have crucial roles in these mechanisms, how such factors are controlled in developmentally dynamic systems is poorly understood. Previously, we described five dispersed Gata2 locus sequences, termed the -77, -3.9, -2.8, -1.8, and +9.5 GATA switch sites, which contain evolutionarily conserved GATA motifs occupied by GATA-2 and GATA-1 in hematopoietic precursors and erythroid cells, respectively. Despite common attributes of transcriptional enhancers, targeted deletions of the -2.8, -1.8, and +9.5 sites revealed distinct and unpredictable contributions to Gata2 expression and hematopoiesis. Herein, we describe the targeted deletion of the -3.9 site and mechanistically compare the -3.9 site with other GATA switch sites. The -3.9(-/-) mice were viable and exhibited normal Gata2 expression and steady-state hematopoiesis in the embryo and adult. We established a Gata2 repression/reactivation assay, which revealed unique +9.5 site activity to mediate GATA factor-dependent chromatin structural transitions. Loss-of-function analyses provided evidence for a mechanism in which a mediator of long-range transcriptional control [LIM domain binding 1 (LDB1)] and a chromatin remodeler [Brahma related gene 1 (BRG1)] synergize through the +9.5 site, conferring expression of GATA-2, which is known to promote the genesis and survival of hematopoietic stem cells.


Assuntos
Fator de Transcrição GATA2/metabolismo , Sequências Reguladoras de Ácido Nucleico , Células-Tronco/citologia , Animais , Sequência de Bases , Diferenciação Celular/genética , Células Cultivadas , Elementos Facilitadores Genéticos , Hematopoese , Humanos , Íntrons , Camundongos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Células-Tronco/metabolismo
19.
J Exp Med ; 210(13): 2833-42, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24297994

RESUMO

The generation of hematopoietic stem cells (HSCs) from hemogenic endothelium within the aorta, gonad, mesonephros (AGM) region of the mammalian embryo is crucial for development of the adult hematopoietic system. We described a deletion of a Gata2 cis-element (+9.5) that depletes fetal liver HSCs, is lethal at E13-14 of embryogenesis, and is mutated in an immunodeficiency that progresses to myelodysplasia/leukemia. Here, we demonstrate that the +9.5 element enhances Gata2 expression and is required to generate long-term repopulating HSCs in the AGM. Deletion of the +9.5 element abrogated the capacity of hemogenic endothelium to generate HSC-containing clusters in the aorta. Genomic analyses indicated that the +9.5 element regulated a rich ensemble of genes that control hemogenic endothelium and HSCs, as well as genes not implicated in hematopoiesis. These results reveal a mechanism that controls stem cell emergence from hemogenic endothelium to establish the adult hematopoietic system.


Assuntos
Elementos Facilitadores Genéticos , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/embriologia , Separação Celular , Feminino , Citometria de Fluxo , Redes Reguladoras de Genes , Genômica , Gônadas/embriologia , Masculino , Mesonefro/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Células-Tronco/citologia
20.
J Biol Chem ; 288(25): 18219-27, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23673656

RESUMO

Acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adults. Previous studies of T-ALL mouse models induced by different genetic mutations have provided highly diverse results on the issues of T-cell leukemia/lymphoma-initiating cells (T-LICs) and potential mechanisms contributing to T-LIC transformation. Here, we show that oncogenic Kras (Kras G12D) expressed from its endogenous locus is a potent inducer of T-ALL even in a less sensitized BALB/c background. Notch1 mutations, including exon 34 mutations and recently characterized type 1 and 2 deletions, are detected in 100% of Kras G12D-induced T-ALL tumors. Although these mutations are not detected at the pre-leukemia stage, incremental up-regulation of NOTCH1 surface expression is observed at the pre-leukemia and leukemia stages. As secondary genetic hits in the Kras G12D model, Notch1 mutations target CD8(+) T-cells but not hematopoietic stem cells to further promote T-ALL progression. Pre-leukemia T-cells without detectable Notch1 mutations do not induce T-ALL in secondary recipient mice compared with T-ALL tumor cells with Notch1 mutations. We found huge variations in T-LIC frequency and immunophenotypes of cells enriched for T-LICs. Unlike Pten deficiency-induced T-ALL, oncogenic Kras-initiated T-ALL is not associated with up-regulation of the Wnt/ß-catenin pathway. Our results suggest that up-regulation of NOTCH1 signaling, through either overexpression of surface NOTCH1 or acquired gain-of-function mutations, is involved in both T-ALL initiation and progression. Notch1 mutations and Kras G12D contribute cooperatively to leukemogenic transformation of normal T-cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Transformação Celular Neoplásica/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Notch1/genética , Adulto , Animais , Transplante de Medula Óssea , Transformação Celular Neoplásica/metabolismo , Citometria de Fluxo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/cirurgia , Pré-Leucemia/genética , Pré-Leucemia/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA