Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Rep ; 43(6): 114272, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795348

RESUMO

Lysine deacetylase inhibitors (KDACis) are approved drugs for cutaneous T cell lymphoma (CTCL), peripheral T cell lymphoma (PTCL), and multiple myeloma, but many aspects of their cellular mechanism of action (MoA) and substantial toxicity are not well understood. To shed more light on how KDACis elicit cellular responses, we systematically measured dose-dependent changes in acetylation, phosphorylation, and protein expression in response to 21 clinical and pre-clinical KDACis. The resulting 862,000 dose-response curves revealed, for instance, limited cellular specificity of histone deacetylase (HDAC) 1, 2, 3, and 6 inhibitors; strong cross-talk between acetylation and phosphorylation pathways; localization of most drug-responsive acetylation sites to intrinsically disordered regions (IDRs); an underappreciated role of acetylation in protein structure; and a shift in EP300 protein abundance between the cytoplasm and the nucleus. This comprehensive dataset serves as a resource for the investigation of the molecular mechanisms underlying KDACi action in cells and can be interactively explored online in ProteomicsDB.


Assuntos
Inibidores de Histona Desacetilases , Proteômica , Humanos , Inibidores de Histona Desacetilases/farmacologia , Proteômica/métodos , Acetilação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteína p300 Associada a E1A/metabolismo , Histona Desacetilases/metabolismo
2.
Sci Rep ; 13(1): 13048, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567912

RESUMO

The development of acute kidney injury (AKI) and hepatorenal syndrome-acute kidney injury (HRS-AKI) in cirrhosis has been associated with intestinal barrier dysfunction and gut-kidney crosstalk. We use the related markers such as zonulin, lipopolysaccharides (LPS), and lipopolysaccharide-binding protein (LBP) to predict AKI and HRS-AKI in cirrhotic patients and evaluate their in vitro effects on intestinal (Caco-2) cells and renal tubular (HK-2) cells. From 2013 to 2020, we enrolled 70 cirrhotic patients and developed prediction models for AKI and HRS-AKI over a six-month period. There were 13 (18.6%) and 8 (11.4%) cirrhotic patients developed AKI and HRS-AKI. The prediction models incorporated zonulin, LPS, LBP, C-reactive protein, age, and history of hepatitis B for AKI, and zonulin, LPS, LBP, total bilirubin, and Child-Pugh score for HRS-AKI. The area under curve (AUC) for the prediction of AKI and HRS-AKI was 0.94 and 0.95, respectively. Furthermore, the conditioned medium of LPS+hrLBP pre-treated Caco-2 cells induced apoptosis, necrosis, and zonulin release in HK-2 cells, demonstrating the communication between them. This study found that zonulin, LPS, and LBP are potential practical markers for predicting AKI and HRS-AKI in cirrhotic patients, which may serve as potential targets for renal outcomes in cirrhotic patients.


Assuntos
Injúria Renal Aguda , Síndrome Hepatorrenal , Humanos , Lipopolissacarídeos , Células CACO-2 , Biomarcadores , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Cirrose Hepática/complicações
3.
Nat Commun ; 14(1): 3548, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322067

RESUMO

Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.


Assuntos
Inibidores de Histona Desacetilases , Ácido Tióctico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácido Tióctico/farmacologia , Histona Desacetilases/metabolismo , Antioxidantes/farmacologia
4.
J Pharmacol Sci ; 152(1): 50-60, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059491

RESUMO

Cirrhosis-related hepatic and renal endothelial dysfunction is characterized by macrophage-endothelium adhesion-mediated inflammation, glycocalyx/barrier damage, and impaired vasodilation. Activation of adenosine A2A receptor (A2AR) protects cirrhotic rats from impairment of hepatic microcirculation post hepatectomy. This study evaluates the effects of A2AR activation on the cirrhosis-related hepatic and renal endothelial dysfunction in biliary cirrhotic rats receiving two weeks of A2AR agonist PSB0777 [bile duct ligated (BDL)+PSB0777] treatment. Endothelial dysfunction in cirrhotic liver, renal vessels, and kidney is characterized by downregulation of the A2AR expressions, decreased vascular endothelial vasodilatory (p-eNOS)/anti-inflammatory (IL-10/IL-10R)/barrier [VE-cadherin (CDH5) and ß-catenin (CTNNB1)]/glycocalyx [syndecan-1 (SDC1) and hyaluronan synthase-2 (HAS2)] markers, and increased leukocyte-endothelium adhesion molecules (F4/80, CD68, ICAM-1, and VCAM-1). In BDL rats, PSB0777 treatment improves hepatic and renal endothelial dysfunction, ameliorates portal hypertension, and attenuates renal hypoperfusion by restoring of the vascular endothelial anti-inflammatory, barrier, glycocalyx markers and vasodilatory response as well as inhibiting the leukocyte-endothelium adhesion. In an in vitro study, conditioned medium (CM) of bone marrow-derived macrophage (BMDM) of BDL rats [BMDM-CM (BDL)] induced barrier/glycocalyx damage, which was reversed by the PSB0777 pre-treatment. The A2AR agonist is a potential agent that can simultaneously correct cirrhosis-related hepatic and renal endothelial dysfunction, portal hypertension, renal hypoperfusion, and renal dysfunction.


Assuntos
Hipertensão Portal , Nefropatias , Ratos , Animais , Receptor A2A de Adenosina , Glicocálix/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Hipertensão Portal/metabolismo , Fibrose , Sindecana-1
5.
J Biol Chem ; 299(4): 103041, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803961

RESUMO

The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.


Assuntos
Proteínas Serina-Treonina Quinases , Splicing de RNA , Processamento Alternativo , Fatores de Processamento de RNA/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF/química , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
Nat Methods ; 19(7): 803-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710609

RESUMO

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análise
7.
Nat Commun ; 13(1): 165, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013197

RESUMO

Proteome-wide measurements of protein turnover have largely ignored the impact of post-translational modifications (PTMs). To address this gap, we employ stable isotope labeling and mass spectrometry to measure the turnover of >120,000 peptidoforms including >33,000 phosphorylated, acetylated, and ubiquitinated peptides for >9,000 native proteins. This site-resolved protein turnover (SPOT) profiling discloses global and site-specific differences in turnover associated with the presence or absence of PTMs. While causal relationships may not always be immediately apparent, we speculate that PTMs with diverging turnover may distinguish states of differential protein stability, structure, localization, enzymatic activity, or protein-protein interactions. We show examples of how the turnover data may give insights into unknown functions of PTMs and provide a freely accessible online tool that allows interrogation and visualisation of all turnover data. The SPOT methodology is applicable to many cell types and modifications, offering the potential to prioritize PTMs for future functional investigations.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoma/metabolismo , Software , Acetilação , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Meia-Vida , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas/genética , Proteólise , Proteoma/classificação , Proteoma/genética , Proteômica/métodos , Ubiquitinação
8.
J Proteome Res ; 20(12): 5402-5411, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34735149

RESUMO

Proteomic biomarker discovery using formalin-fixed paraffin-embedded (FFPE) tissue requires robust workflows to support the analysis of large cohorts of patient samples. It also requires finding a reasonable balance between achieving a high proteomic depth and limiting the overall analysis time. To this end, we evaluated the merits of online coupling of single-use disposable trap column nanoflow liquid chromatography, high-field asymmetric-waveform ion-mobility spectrometry (FAIMS), and tandem mass spectrometry (nLC-FAIMS-MS/MS). The data show that ≤600 ng of peptide digest should be loaded onto the chromatographic part of the system. Careful characterization of the FAIMS settings enabled the choice of optimal combinations of compensation voltages (CVs) as a function of the employed LC gradient time. We found nLC-FAIMS-MS/MS to be on par with StageTip-based off-line basic pH reversed-phase fractionation in terms of proteomic depth and reproducibility of protein quantification (coefficient of variation ≤15% for 90% of all proteins) but requiring 50% less sample and substantially reducing sample handling. Using FFPE materials from the lymph node, lung, and prostate tissue as examples, we show that nLC-FAIMS-MS/MS can identify 5000-6000 proteins from the respective tissue within a total of 3 h of analysis time.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteínas Reguladoras de Apoptose , Cromatografia Líquida/métodos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Masculino , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
Nat Commun ; 12(1): 2539, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953186

RESUMO

Phosphoproteomics can provide insights into cellular signaling dynamics. To achieve deep and robust quantitative phosphoproteomics profiling for minute amounts of sample, we here develop a global phosphoproteomics strategy based on data-independent acquisition (DIA) mass spectrometry and hybrid spectral libraries derived from data-dependent acquisition (DDA) and DIA data. Benchmarking the method using 166 synthetic phosphopeptides shows high sensitivity (<0.1 ng), accurate site localization and reproducible quantification (~5% median coefficient of variation). As a proof-of-concept, we use lung cancer cell lines and patient-derived tissue to construct a hybrid phosphoproteome spectral library covering 159,524 phosphopeptides (88,107 phosphosites). Based on this library, our single-shot streamlined DIA workflow quantifies 36,350 phosphosites (19,755 class 1) in cell line samples within two hours. Application to drug-resistant cells and patient-derived lung cancer tissues delineates site-specific phosphorylation events associated with resistance and tumor progression, showing that our workflow enables the characterization of phosphorylation signaling with deep coverage, high sensitivity and low between-run missing values.


Assuntos
Fosfopeptídeos/metabolismo , Proteoma/análise , Proteômica , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Fosforilação , Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
11.
Anal Chem ; 93(8): 3686-3690, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596053

RESUMO

Microflow liquid chromatography tandem mass spectrometry (µLC-MS/MS) is becoming a viable alternative to nanoflow LC-MS/MS for the analysis of proteomes. We have recently demonstrated the potential of such a system operating with a 1 mm i.d. × 150 mm column and at a flow rate of 50 µL/min for high-throughput applications. On the basis of the analysis of ∼38 000 samples measured on two instruments over the past two years, we now show that the approach is extremely robust. Up to 1500 analyses were performed within one month, and >14 000 samples could be analyzed on a single column without loss of chromatographic performance. Samples included proteomes of cell lines, tissues, and human body fluids, which were analyzed with or without prior peptide fractionation or stable isotope labeling. We show that the µLC-MS/MS system is capable of measuring 2600 proteins from undepleted human plasma and ∼5000 proteins from crude human urine in 1 day, demonstrating its potential for in-depth as well as high-throughput clinical application.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Marcação por Isótopo , Peptídeos
12.
Mol Cell ; 77(6): 1322-1339.e11, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32006464

RESUMO

Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/genética , Cromatina/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Quinases/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Proteínas Repressoras/genética , Spliceossomos/genética
13.
Nat Commun ; 11(1): 157, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919466

RESUMO

Nano-flow liquid chromatography tandem mass spectrometry (nano-flow LC-MS/MS) is the mainstay in proteome research because of its excellent sensitivity but often comes at the expense of robustness. Here we show that micro-flow LC-MS/MS using a 1 × 150 mm column shows excellent reproducibility of chromatographic retention time (<0.3% coefficient of variation, CV) and protein quantification (<7.5% CV) using data from >2000 samples of human cell lines, tissues and body fluids. Deep proteome analysis identifies >9000 proteins and >120,000 peptides in 16 h and sample multiplexing using tandem mass tags increases throughput to 11 proteomes in 16 h. The system identifies >30,000 phosphopeptides in 12 h and protein-protein or protein-drug interaction experiments can be analyzed in 20 min per sample. We show that the same column can be used to analyze >7500 samples without apparent loss of performance. This study demonstrates that micro-flow LC-MS/MS is suitable for a broad range of proteomic applications.


Assuntos
Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células HeLa , Humanos , Peptídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA