RESUMO
This study explores the potential of using a Siamese Network as a biomarker for assessing the effectiveness of Dolphin-Assisted Therapy (DAT) in children with Spastic Cerebral Palsy (SCP). The problem statement revolves around the need for objective measures to evaluate the impact of DAT on patients with SCP, considering the subjective nature of traditional assessment methods. The methodology involves training a Siamese network, a type of neural network designed to compare similarities between inputs, using data collected from SCP patients undergoing DAT sessions. The study employed Event-Related Potential (ERP) and Fast Fourier Transform (FFT) analyses to examine cerebral activity and brain rhythms, proposing the use of SNN to compare electroencephalographic (EEG) signals of children with cerebral palsy before and after Dolphin-Assisted Therapy. Testing on samples from four children yielded a high average similarity index of 0.9150, indicating consistent similarity metrics before and after therapy. The network is trained to learn patterns and similarities between pre- and post-therapy evaluations, in order to identify biomarkers indicative of therapy effectiveness. Notably, the Siamese Network's architecture ensures that comparisons are made within the same feature space, allowing for more accurate assessments. The results of the study demonstrate promising findings, indicating different patterns in the output of the Siamese Network that correlate with improvements in symptoms of SCP post-DAT. Confirming these observations will require large, longitudinal studies but such findings would suggest that the Siamese Network could have utility as a biomarker in monitoring treatment responses for children with SCP who undergo DAT and offer them more objective as well as quantifiable manners of assessing therapeutic interventions. Great discrepancies in neuronal voltage perturbations, 7.9825 dB on average at the specific samples compared to the whole dataset (6.2838 dB), imply a noted deviation from resting activity. These findings indicate that Dolphin-Assisted Therapy activates particular brain regions specifically during the intervention.
RESUMO
In Mexico, according to data from the General Directorate of Health Information (2018), there is an annual incidence of 689 newborns with Trisomy 21, well-known as Down Syndrome. Worldwide, this incidence is estimated between 1 in every 1000 newborns, approximately. That is why this work focuses on the detection and analysis of facial emotions in children with Down Syndrome in order to predict their emotions throughout a dolphin-assisted therapy. In this work, two databases are used: Exploratory Data Analysis, with a total of 20,214 images, and the Down's Syndrome Dataset database, with 1445 images for training, validation, and testing of the neural network models. The construction of two architectures based on a Deep Convolutional Neural Network manages an efficiency of 79%, when these architectures are tested with a large reference image database. Then, the architecture that achieves better results is trained, validated, and tested in a small-image database with the facial emotions of children with Down Syndrome, obtaining an efficiency of 72%. However, this increases by 9% when the brain activity of the child is included in the training, resulting in an average precision of 81%. Using electroencephalogram (EEG) signals in a Convolutional Neural Network (CNN) along with the Down's Syndrome Dataset (DSDS) has promising advantages in the field of brain-computer interfaces. EEG provides direct access to the electrical activity of the brain, allowing for real-time monitoring and analysis of cognitive states. Integrating EEG signals into a CNN architecture can enhance learning and decision-making capabilities. It is important to note that this work has the primary objective of addressing a doubly vulnerable population, as these children also have a disability.
RESUMO
There are several pathologies attacking the central nervous system and diverse therapies for each specific disease. These therapies seek as far as possible to minimize or offset the consequences caused by these types of pathologies and disorders in the patient. Therefore, comprehensive neurological care has been performed by neurorehabilitation therapies, to improve the patients' life quality and facilitating their performance in society. One way to know how the neurorehabilitation therapies contribute to help patients is by measuring changes in their brain activity by means of electroencephalograms (EEG). EEG data-processing applications have been used in neuroscience research to be highly computing- and data-intensive. Our proposal is an integrated system of Electroencephalographic, Electrocardiographic, Bioacoustic, and Digital Image Acquisition Analysis to provide neuroscience experts with tools to estimate the efficiency of a great variety of therapies. The three main axes of this proposal are: parallel or distributed capture, filtering and adaptation of biomedical signals, and synchronization in real epochs of sampling. Thus, the present proposal underlies a general system, whose main objective is to be a wireless benchmark in the field. In this way, this proposal could acquire and give some analysis tools for biomedical signals used for measuring brain interactions when it is stimulated by an external system during therapies, for example. Therefore, this system supports extreme environmental conditions, when necessary, which broadens the spectrum of its applications. In addition, in this proposal sensors could be added or eliminated depending on the needs of the research, generating a wide range of configuration limited by the number of CPU cores, i.e., the more biosensors, the more CPU cores will be required. To validate the proposed integrated system, it is used in a Dolphin-Assisted Therapy in patients with Infantile Cerebral Palsy and Obsessive-Compulsive Disorder, as well as with a neurotypical one. Event synchronization of sample periods helped isolate the same therapy stimulus and allowed it to be analyzed by tools such as the Power Spectrum or the Fractal Geometry.
Assuntos
Encéfalo , Eletroencefalografia , Computadores , HumanosRESUMO
The Industrial Internet of Things (IIoT) network generates great economic benefits in processes, system installation, maintenance, reliability, scalability, and interoperability. Wireless sensor networks (WSNs) allow the IIoT network to collect, process, and share data of different parameters among Industrial IoT sense Node (IISN). ESP8266 are IISNs connected to the Internet by means of a hub to share their information. In this article, a light-diffusion algorithm in WSN to connect all the IISNs is designed, based on the Peano fractal and swarm intelligence, i.e., without using a hub, simply sharing parameters with two adjacent IINSs, assuming that any IISN knows the parameters of the rest of these devices, even if they are not adjacent. We simulated the performance of our algorithm and compared it with other state-of-the-art protocols, finding that our proposal generates a longer lifetime of the IIoT network when few IISNs were connected. Thus, there is a saving-energy of approximately 5% but with 64 nodes there is a saving of more than 20%, because the IIoT network can grow in a 3 n way and the proposed topology does not impact in a linear way but log 3 , which balances energy consumption throughout the IIoT network.
RESUMO
We introduce a lexical resource for preprocessing social media data. We show that a neural network-based feature representation is enhanced by using this resource. We conducted experiments on the PAN 2015 and PAN 2016 author profiling corpora and obtained better results when performing the data preprocessing using the developed lexical resource. The resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. Each of the dictionaries was built for the English, Spanish, Dutch, and Italian languages. The resource is freely available.