Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(2): 201-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278415

RESUMO

Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show thatBT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary immunoglobulin (Ig)G and IgA levels against the Omicron spike and enhanced reactivity to the ancestral spike for the IgA isotype, which also reacted with SARS-CoV-1. Serumneutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for the development of intranasal vaccines that could emulate the enhanced mucosal and humoral immunity induced by Omicron BT without exposing individuals to the risks associated with SARS-CoV-2 infection.


Assuntos
COVID-19 , População Norte-Americana , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções Irruptivas , Canadá , Vacinas contra COVID-19 , Imunidade Humoral , Imunoglobulina A Secretora , Imunoglobulina G
2.
J Immunol ; 211(3): 351-364, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326480

RESUMO

Previous studies have reported impaired humoral responses after SARS-CoV-2 mRNA vaccination in patients with immune-mediated inflammatory diseases (IMIDs), particularly those treated with anti-TNF biologics. We previously reported that IMID patients diagnosed with inflammatory bowel disease, psoriasis, psoriatic arthritis, ankylosing spondylitis, or rheumatoid arthritis exhibited greater waning of Ab and T cell responses than healthy control subjects after SARS-CoV-2 vaccine dose 2. Fewer data are available on the effects of third and fourth doses. This observational cohort study collected plasma and PBMCs from healthy control subjects and untreated or treated patients with IMIDs prevaccination and after one to four doses of SARS-CoV-2 mRNA vaccine (BNT162b2 or mRNA-1273). SARS-CoV-2-specific Ab levels, neutralization, and T cell cytokine release were measured against wild-type and Omicron BA.1 and BA.5 variants of concern. Third vaccine doses substantially restored and prolonged Ab and T cell responses in patients with IMIDs and broadened responses against variants of concern. Fourth-dose effects were subtle but also prolonged Ab responses. However, patients with IMIDs treated with anti-TNF, especially patients with inflammatory bowel disease, exhibited lower Ab responses even after the fourth dose. Although T cell IFN-γ responses were maximal after one dose, IL-2 and IL-4 production increased with successive doses, and early production of these cytokines was predictive of neutralization responses at 3-4 mo postvaccination. Our study demonstrates that third and fourth doses of the SARS-CoV-2 mRNA vaccines sustain and broaden immune responses to SARS-CoV-2, supporting the recommendation for three- and four-dose vaccination regimens in patients with IMIDs.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Vacinas , Humanos , Adulto , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Agentes de Imunomodulação , Inibidores do Fator de Necrose Tumoral , COVID-19/prevenção & controle , Vacinação , Citocinas , Anticorpos Antivirais
3.
Mucosal Immunol ; 15(5): 799-808, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468942

RESUMO

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , RNA Mensageiro/genética , SARS-CoV-2 , Componente Secretório , Vacinação
4.
J Immunol ; 208(2): 429-443, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903642

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Assuntos
Formação de Anticorpos , COVID-19/imunologia , Imunidade Celular , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
J Immunol ; 192(8): 3645-53, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24646746

RESUMO

The autoimmune diabetic syndrome of the BioBreeding diabetes-prone (BBDP) rat is a polygenic disease that resembles in many aspects human type 1 diabetes (T1D). A successful approach to gain insight into the mechanisms underlying genetic associations in autoimmune diseases has been to identify and map disease-related subphenotypes that are under simpler genetic control than the full-blown disease. In this study, we focused on the ß cell overexpression of Ccl11 (Eotaxin), previously postulated to be diabetogenic in BBDR rats, a BBDP-related strain. We tested the hypothesis that this trait is genetically determined and contributes to the regulation of diabetes in BBDP rats. Similar to the BBDR strain, we observed a time-dependent, insulitis-independent pancreatic upregulation of Ccl11 in BBDP rats when compared with T1D-resistant ACI.1u.lyp animals. Through linkage analysis of a cross-intercross of these two parental strains, this trait was mapped to a region on chromosome 12 that overlaps Iddm30. Linkage results were confirmed by phenotypic assessment of a novel inbred BBDP.ACI-Iddm30 congenic line. As expected, the Iddm30 BBDP allele is associated with a significantly higher pancreatic expression of Ccl11; however, the same allele confers resistance to T1D. Analysis of islet-infiltrating T cells in Iddm30 congenic BBDP animals revealed that overexpression of pancreatic Ccl11, a prototypical Th2 chemokine, is associated with an enrichment in Th2 CD4+ T cells within the insulitic lesions. These results indicate that, in the BBDP rat, Iddm30 controls T1D susceptibility through both the regulation of Ccl11 expression in ß cells and the subsequent Th1/Th2 balance within islet-infiltrating T lymphocytes.


Assuntos
Quimiocina CCL11/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica , Loci Gênicos/genética , Pâncreas/imunologia , Pâncreas/metabolismo , Equilíbrio Th1-Th2 , Animais , Cruzamento , Epistasia Genética , Feminino , Expressão Gênica , Ligação Genética , Genótipo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Fenótipo , Ratos , Ratos Endogâmicos BB , Transcrição Gênica
6.
Diabetes ; 58(4): 1007-17, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168599

RESUMO

OBJECTIVE: Two type 1 diabetes susceptibility genes have been identified in the spontaneously diabetic biobreeding diabetes-prone (BBDP) rat, the major histocompatibility complex (MHC) (RT1) class II u haplotype (Iddm1) and Gimap5 (Iddm2). The strong effects of these have impeded previous efforts to map additional loci. We tested the hypothesis that type 1 diabetes is a polygenic disease in the BBDP rat. RESEARCH DESIGN AND METHODS: We performed the most comprehensive genome-wide linkage analysis for type 1 diabetes, age of disease onset (AOO), and insulitis subphenotypes in 574 F2 animals from a cross-intercross between BBDP and type 1 diabetes-resistant, double congenic ACI.BBDP-RT1u,Gimap5 (ACI.BB(1u.lyp)) rats, where both Iddm1 and Iddm2 were fixed as BBDP. RESULTS: A total of 19% of these F2 animals developed type 1 diabetes, and eight type 1 diabetes susceptibility loci were mapped, six showing significant linkage (chromosomes 1, 3, 6 [two loci], 12, and 14) and two (chromosomes 2 and 17) suggestive linkage. The chromosomes 6, 12, and 14 intervals were also linked to the severity of islet infiltration by immunocytes, while those on chromosomes 1, 6 (two loci), 14, 17, and a type 1 diabetes-unlinked chromosome 8 interval showed significant linkage to the degree of islet atrophy. Four loci exhibited suggestive linkage to AOO on chromosomes 2 (two loci), 7, and 18 but were unlinked to type 1 diabetes. INS, PTPN22, IL2/IL21, C1QTNF6, and C12orf30, associated with human type 1 diabetes, are contained within the chromosomes 1, 2, 7, and 12 loci. CONCLUSIONS: This study demonstrates that the BBDP diabetic syndrome is a complex, polygenic disease that may share additional susceptibility genes besides MHC class II with human type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Ratos Endogâmicos BB/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Modelos Animais de Doenças , Intervalo Livre de Doença , Genoma , Glicosúria , Humanos , Modelos Genéticos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA