Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Pharmacol Sin ; 43(3): 602-612, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34011968

RESUMO

Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.


Assuntos
Fibrose/patologia , Cardiopatias/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Iminas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos
2.
Nat Commun ; 12(1): 4452, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294713

RESUMO

Atherosclerosis-associated cardiovascular disease is one of the main causes of death and disability among patients with diabetes mellitus. However, little is known about the impact of S-nitrosylation in diabetes-accelerated atherosclerosis. Here, we show increased levels of S-nitrosylation of guanine nucleotide-binding protein G(i) subunit alpha-2 (SNO-GNAI2) at Cysteine 66 in coronary artery samples from diabetic patients with atherosclerosis, consistently with results from mice. Mechanistically, SNO-GNAI2 acted by coupling with CXCR5 to dephosphorylate the Hippo pathway kinase LATS1, thereby leading to nuclear translocation of YAP and promoting an inflammatory response in endothelial cells. Furthermore, Cys-mutant GNAI2 refractory to S-nitrosylation abrogated GNAI2-CXCR5 coupling, alleviated atherosclerosis in diabetic mice, restored Hippo activity, and reduced endothelial inflammation. In addition, we showed that melatonin treatment restored endothelial function and protected against diabetes-accelerated atherosclerosis by preventing GNAI2 S-nitrosylation. In conclusion, SNO-GNAI2 drives diabetes-accelerated atherosclerosis by coupling with CXCR5 and activating YAP-dependent endothelial inflammation, and reducing SNO-GNAI2 is an efficient strategy for alleviating diabetes-accelerated atherosclerosis.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Cisteína/química , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos Nitrosos/química , Compostos Nitrosos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores CXCR5/deficiência , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
3.
J Am Heart Assoc ; 6(2)2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209562

RESUMO

BACKGROUND: Vinexin ß is a novel adaptor protein that regulates cellular adhesion, cytoskeletal reorganization, signal transduction, and transcription; however, the exact role that vinexin ß plays in atherosclerosis remains unknown. METHODS AND RESULTS: Immunoblot analysis showed that vinexin ß expression is upregulated in the atherosclerotic lesions of both patients with coronary heart disease and hyperlipemic apolipoprotein E-deficient mice and is primarily localized in macrophages indicated by immunofluorescence staining. The high-fat diet-induced double-knockout mice exhibited lower aortic plaque burdens than apolipoprotein E-/- littermates and decreased macrophage content. Vinexin ß deficiency improved plaque stability by attenuating lipid accumulation and increasing smooth muscle cell content and collagen. Moreover, the bone marrow transplant experiment demonstrated that vinexin ß deficiency exerts atheroprotective effects in hematopoietic cells. Consistent with these changes, the mRNA expression of proinflammatory cytokines were downregulated in vinexin ß-/- apolipoprotein E-/- mice, whereas the anti-inflammatory M2 macrophage markers were upregulated. The immunohistochemical staining and in vitro experiments showed that deficiency of vinexin ß inhibited the accumulation of monocytes and the migration of macrophages induced by tumor necrosis factor α-stimulated human umbilical vein endothelial cells as well as macrophage proliferation. Finally, the inhibitory effects exerted by vinexin ß deficiency on foam cell formation, nuclear factor κB activation, and inflammatory cytokine expression were largely reversed by constitutive Akt activation, whereas the increased expression of the nuclear factor κB subset promoted by adenoviral vinexin ß was dramatically suppressed by inhibition of AKT. CONCLUSIONS: Vinexin ß deficiency attenuates atherogenesis primarily by suppressing vascular inflammation and inactivating Akt-nuclear factor κB signaling. Our data suggest that vinexin ß could be a therapeutic target for the treatment of atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Vasos Coronários/metabolismo , Regulação da Expressão Gênica , Proteínas Musculares/genética , RNA Mensageiro/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Western Blotting , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/biossíntese , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Vinculina
4.
J Am Heart Assoc ; 5(12)2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007744

RESUMO

BACKGROUND: Atherosclerosis is a chronic disease that is closely related to inflammation and macrophage apoptosis, which leads to secondary necrosis and proinflammatory responses in advanced lesions. Caspase-activated DNase (CAD) is a double-strand specific endonuclease that leads to the subsequent degradation of chromosome DNA during apoptosis. However, whether CAD is involved in the progression of atherosclerosis remains elusive. METHODS AND RESULTS: CAD-/-ApoE-/- and ApoE-/- littermates were fed a high-fat diet for 28 weeks to develop atherosclerosis. Human specimens were collected from coronary heart disease (CHD) patients who were not suitable for transplantation. CAD expression was increased in the atheromatous lesions of CHD patients and high-fat diet-treated ApoE-deficient mice. Further investigation demonstrated that CAD deficiency inhibited high-fat diet-induced atherosclerosis, as evidenced by decreased atherosclerotic plaques, inhibited inflammatory response, and macrophage apoptosis, as well as enhanced stability of plaques in CAD-/-ApoE-/- mice compared to the ApoE-/- controls. Bone marrow transplantation verified the effect of CAD on atherosclerosis from macrophages. Mechanically, the decrease in the phosphorylated levels of mitogen-activated protein kinase (MAPK) kinase/extracellular signal-regulated kinase 1 and 2 (MEK-ERK1/2) that resulted from CAD knockout and the activation of nuclear factor kappa B signaling mediated by CAD stimulation that was suppressed by inhibiting ERK1/2 phosphorylation revealed the potential association between the role of CAD in atherosclerosis and the MAPK signaling pathway. CONCLUSIONS: In conclusion, CAD deficiency protects against atherosclerosis through inhibiting inflammation and macrophage apoptosis, which is partially through inactivation of the MEK-ERK1/2 signaling pathway. This finding provides a promising therapeutic target for treating atherosclerosis.


Assuntos
Aterosclerose/genética , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Aterosclerose/metabolismo , Western Blotting , Doença das Coronárias/metabolismo , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Fosforilação , Placa Aterosclerótica/patologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA