Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
2.
Sci Total Environ ; 924: 171591, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485019

RESUMO

Landscape ecologists have long suggested that pest abundances increase in simplified, monoculture landscapes. However, tests of this theory often fail to predict pest population sizes in real-world agricultural fields. These failures may arise not only from variation in pest ecology, but also from the widespread use of categorical land-use maps that do not adequately characterize habitat-availability for pests. We used 1163 field-year observations of Lygus hesperus (Western Tarnished Plant Bug) densities in California cotton fields to determine whether integrating remotely-sensed metrics of vegetation productivity and phenology into pest models could improve pest abundance analysis and prediction. Because L. hesperus often overwinters in non-crop vegetation, we predicted that pest abundances would peak on farms surrounded by more non-crop vegetation, especially when the non-crop vegetation is initially productive but then dries down early in the year, causing the pest to disperse into cotton fields. We found that the effect of non-crop habitat on pest densities varied across latitudes, with a positive relationship in the north and a negative one in the south. Aligning with our hypotheses, models predicted that L. hesperus densities were 35 times higher on farms surrounded by high versus low productivity non-crop vegetation (EVI area 350 vs. 50) and 2.8 times higher when dormancy occurred earlier versus later in the year (May 15 vs. June 30). Despite these strong and significant effects, we found that integrating these remote-sensing variables into land-use models only marginally improved pest density predictions in cotton compared to models with categorical land cover metrics alone. Together, our work suggests that the remote sensing variables analyzed here can advance our understanding of pest ecology, but not yet substantively increase the accuracy of pest abundance predictions.


Assuntos
Besouros , Heterópteros , Animais , Agricultura , Ecossistema , Plantas , Fazendas
3.
Nat Commun ; 15(1): 261, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199986

RESUMO

Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature's contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature's contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature's contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.


Assuntos
Ecossistema , Planetas , Humanos , Biodiversidade , Agricultura , Clima
4.
Nature ; 620(7975): 813-823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558877

RESUMO

Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.


Assuntos
Ecossistema , Justiça Ambiental , Política Ambiental , Objetivos , Desenvolvimento Sustentável , Humanos , Biodiversidade , Desenvolvimento Sustentável/economia , Política Ambiental/economia , Mudança Climática
5.
Sci Adv ; 9(14): eadf5492, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027474

RESUMO

Sustaining ecosystem services (ES) critical to human well-being is hindered by many practitioners lacking access to ES models ("the capacity gap") or knowledge of the accuracy of available models ("the certainty gap"), especially in the world's poorer regions. We developed ensembles of multiple models at an unprecedented global scale for five ES of high policy relevance. Ensembles were 2 to 14% more accurate than individual models. Ensemble accuracy was not correlated with proxies for research capacity, indicating that accuracy is distributed equitably across the globe and that countries less able to research ES suffer no accuracy penalty. By making these ES ensembles and associated accuracy estimates freely available, we provide globally consistent ES information that can support policy and decision-making in regions with low data availability or low capacity for implementing complex ES models. Thus, we hope to reduce the capacity and certainty gaps impeding local- to global-scale movement toward ES sustainability.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Políticas
6.
Nat Ecol Evol ; 7(1): 51-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443466

RESUMO

Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature's contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world's population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.


Assuntos
Ecossistema , Planetas , Humanos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Aves , Mamíferos
8.
Ann N Y Acad Sci ; 1520(1): 89-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36576483

RESUMO

There has been a seismic shift in the center of gravity of scientific writing and thinking about agriculture over the past decades, from a prevailing focus on maximizing yields toward a goal of balancing trade-offs and ensuring the delivery of multiple ecosystem services. Maximizing crop yields often results in a system where most benefits accrue to very few (in the form of profits), alongside irreparable environmental harm to agricultural ecosystems, landscapes, and people. Here, we present evidence that an un-yielding, which we define as de-emphasizing the importance of yields alone, is necessary to achieve the goal of a more Food secure, Agrobiodiverse, Regenerative, Equitable and just (FARE) agriculture. Focusing on yields places the emphasis on one particular outcome of agriculture, which is only an intermediate means to the true endpoint of human well-being. Using yields as a placeholder for this outcome ignores the many other benefits of agriculture that people also care about, like health, livelihoods, and a sense of place. Shifting the emphasis to these multiple benefits rather than merely yields, and to their equitable delivery to all people, we find clear scientific evidence of win-wins for people and nature through four strategies that foster FARE agriculture: reduced disturbance, systems reintegration, diversity, and justice (in the form of securing rights to land and other resources). Through a broad review of the current state of agriculture, desired futures, and the possible pathways to reach them, we argue that while trade-offs between some ecosystem services in agriculture are unavoidable, the same need not be true of the end benefits we desire from them.


Assuntos
Agricultura , Ecossistema , Humanos , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Previsões
9.
Nat Ecol Evol ; 7(2): 176-177, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36376601
10.
Proc Natl Acad Sci U S A ; 119(37): e2208813119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067287

RESUMO

Increasing diversity on farms can enhance many key ecosystem services to and from agriculture, and natural control of arthropod pests is often presumed to be among them. The expectation that increasing the size of monocultural crop plantings exacerbates the impact of pests is common throughout the agroecological literature. However, the theoretical basis for this expectation is uncertain; mechanistic mathematical models suggest instead that increasing field size can have positive, negative, neutral, or even nonlinear effects on arthropod pest densities. Here, we report a broad survey of crop field-size effects: across 14 pest species, 5 crops, and 20,000 field years of observations, we quantify the impact of field size on pest densities, pesticide applications, and crop yield. We find no evidence that larger fields cause consistently worse pest impacts. The most common outcome (9 of 14 species) was for pest severity to be independent of field size; larger fields resulted in less severe pest problems for four species, and only one species exhibited the expected trend of larger fields worsening pest severity. Importantly, pest responses to field size strongly correlated with their responses to the fraction of the surrounding landscape planted to the focal crop, suggesting that shared ecological processes produce parallel responses to crop simplification across spatial scales. We conclude that the idea that larger field sizes consistently disrupt natural pest control services is without foundation in either the theoretical or empirical record.


Assuntos
Proteção de Cultivos , Produtos Agrícolas , Controle de Insetos , Insetos , Controle Biológico de Vetores , Animais , Produtos Agrícolas/parasitologia , Ecossistema
11.
Ecol Appl ; 32(8): e2696, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35735258

RESUMO

Control of crop pests by shifting host plant availability and natural enemy activity at landscape scales has great potential to enhance the sustainability of agriculture. However, mainstreaming natural pest control requires improved understanding of how its benefits can be realized across a variety of agroecological contexts. Empirical studies suggest significant but highly variable responses of natural pest control to land-use change. Current ecological models are either too specific to provide insight across agroecosystems or too generic to guide management with actionable predictions. We suggest obtaining the full benefit of available empirical, theoretical, and methodological knowledge by combining trait-mediated understanding from correlative studies with the explicit representation of causal relationships achieved by mechanistic modeling. To link these frameworks, we adapt the concept of archetypes, or context-specific generalizations, from sustainability science. Similar responses of natural pest control to land-use gradients across cases that share key attributes, such as functional traits of focal organisms, indicate general processes that drive system behavior in a context-sensitive manner. Based on such observations of natural pest control, a systematic definition of archetypes can provide the basis for mechanistic models of intermediate generality that cover all major agroecosystems worldwide. Example applications demonstrate the potential for upscaling understanding and improving predictions of natural pest control, based on knowledge transfer and scientific synthesis. A broader application of this mechanistic archetype approach promises to enhance ecology's contribution to natural resource management across diverse regions and social-ecological contexts.


Assuntos
Ecossistema , Controle Biológico de Vetores , Controle de Pragas , Agricultura , Produtos Agrícolas , Recursos Naturais
12.
Proc Natl Acad Sci U S A ; 119(11): e2107662119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245152

RESUMO

SignificanceTourism accounts for roughly 10% of global gross domestic product, with nature-based tourism its fastest-growing sector in the past 10 years. Nature-based tourism can theoretically contribute to local and sustainable development by creating attractive livelihoods that support biodiversity conservation, but whether tourists prefer to visit more biodiverse destinations is poorly understood. We examine this question in Costa Rica and find that more biodiverse places tend indeed to attract more tourists, especially where there is infrastructure that makes these places more accessible. Safeguarding terrestrial biodiversity is critical to preserving the substantial economic benefits that countries derive from tourism. Investments in both biodiversity conservation and infrastructure are needed to allow biodiverse countries to rely on tourism for their sustainable development.


Assuntos
Biodiversidade , Desenvolvimento Econômico , Turismo , Conservação dos Recursos Naturais , Costa Rica , Humanos , Recreação
14.
Ecol Lett ; 24(1): 73-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33051978

RESUMO

Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13-year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four-fold in simplified, vineyard-dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi-natural habitats. Similarly, insecticide applications doubled in vineyard-dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest-control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.


Assuntos
Inseticidas , Animais , Surtos de Doenças , Ecossistema , Fazendas , Controle Biológico de Vetores
15.
Proc Biol Sci ; 287(1937): 20202116, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109015

RESUMO

Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous. On the contrary, populations of exotic pests increased with an increasing cover of semi-natural habitats. These effects might be related to changes in host plants and other resources across the landscapes and/or to modified top-down control by natural enemies. The range of the landscape gradient explored and climate did not affect pests, while crop type modified the response of pests to landscape composition. Although species traits and environmental context helped in explaining some of the variability in pest response to landscape composition, the observed large interspecific differences suggest that a portfolio of strategies must be considered and implemented for the effective control of rapidly changing communities of crop pests in agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Animais , Insetos , Controle Biológico de Vetores
17.
Nat Plants ; 6(5): 503-510, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32366981

RESUMO

Numerous studies have demonstrated that plant species diversity enhances ecosystem functioning in terrestrial ecosystems, including diversity effects on insects (herbivores, predators and parasitoids) and plants. However, the effects of increased plant diversity across trophic levels in different ecosystems and biomes have not yet been explored on a global scale. Through a global meta-analysis of 2,914 observations from 351 studies, we found that increased plant species richness reduced herbivore abundance and damage but increased predator and parasitoid abundance, predation, parasitism and overall plant performance. Moreover, increased predator/parasitoid performance was correlated with reduced herbivore abundance and enhanced plant performance. We conclude that increasing plant species diversity promotes beneficial trophic interactions between insects and plants, ultimately contributing to increased ecosystem services.


Assuntos
Biodiversidade , Ecossistema , Plantas , Animais , Herbivoria , Insetos , Dinâmica Populacional
18.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
19.
Science ; 366(6462): 255-258, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601772

RESUMO

The magnitude and pace of global change demand rapid assessment of nature and its contributions to people. We present a fine-scale global modeling of current status and future scenarios for several contributions: water quality regulation, coastal risk reduction, and crop pollination. We find that where people's needs for nature are now greatest, nature's ability to meet those needs is declining. Up to 5 billion people face higher water pollution and insufficient pollination for nutrition under future scenarios of land use and climate change, particularly in Africa and South Asia. Hundreds of millions of people face heightened coastal risk across Africa, Eurasia, and the Americas. Continued loss of nature poses severe threats, yet these can be reduced 3- to 10-fold under a sustainable development scenario.


Assuntos
Produtos Agrícolas , Modelos Teóricos , Natureza , Polinização , Qualidade da Água , África , América , Ásia , Mudança Climática , Conservação dos Recursos Naturais , Países em Desenvolvimento , Ecossistema , Meio Ambiente , Europa (Continente) , Humanos , Poluição da Água
20.
Sci Total Environ ; 688: 827-837, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31255821

RESUMO

Palm oil, the most widely used vegetable oil, is one of the largest drivers of greenhouse gas (GHG) emissions from global land use and land cover change. Here, we provide fine-resolution (100 m × 100 m) estimates of GHG footprints of current (2015) and potential future scenarios (2030) of crude palm oil (CPO) production in Indonesia. The current estimated average GHG footprint excluding production on Java is 5.7 t CO2 eq t-1 CPO; ranging from 0.7 t CO2 eq t-1 CPO in Hulu Sungai Tengah, Kalimantan to 26.0 t CO2 eq t-1 CPO in Pontianak, Kalimantan, and these vast differences are only discernible at fine spatial scales. The future GHG footprint of Indonesian CPO could be reduced by 42% without compromising increased output by limiting expansion to non-forest and non-peat land. Our fine-scale analysis provides a spatial screening approach to inform new oil palm concessions and sourcing decisions, before more cost-intensive patch analysis and carbon stock assessments are conducted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA