Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadk7615, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941463

RESUMO

Seismic observations of impacts on Mars indicate a higher impact flux than previously measured. Using six confirmed seismic impact detections near the NASA InSight lander and two distant large impacts, we calculate appropriate scalings to compare these rates with lunar-based chronology models. We also update the impact rate from orbital observations using the most recent catalog of new craters on Mars. The snapshot of the current impact rate at Mars recorded seismically is higher than that found using orbital detections alone. The measured rates differ between a factor of 2 and 10, depending on the diameter, although the sample size of seismically detected impacts is small. The close timing of the two largest new impacts found on Mars in the past few decades indicates either a heightened impact rate or a low-probability temporal coincidence, perhaps representing recent fragmentation of a parent body. We conclude that seismic methods of detecting current impacts offer a more complete dataset than orbital imaging.

2.
Proc Natl Acad Sci U S A ; 120(18): e2217090120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094138

RESUMO

We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars' core. We observe core-transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-alloy core. Our inversions provide constraints on the velocities in Mars' core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core-mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars' core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.

3.
J Prosthet Dent ; 129(1): 14-17, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33985757

RESUMO

Restoring teeth with ceramic laminate veneers is most often an additive procedure. However, when proclined anterior teeth are being treated, a misfitting silicone matrix will lead to inaccurate trial restorations, affecting evaluation of the definitive esthetic result and leading to inaccurate definitive preparations. Using the digital technology, a 3-dimensionally printed reduction guide can be used to remove the proclined areas as the first step before trial restorations. Then, the trial restorations and made and then the definitive preparations made through them.


Assuntos
Porcelana Dentária , Facetas Dentárias , Estética Dentária , Cerâmica
4.
Nat Commun ; 13(1): 7950, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572693

RESUMO

The most distant marsquake recorded so far by the InSight seismometer occurred at an epicentral distance of 146.3 ± 6.9o, close to the western end of Valles Marineris. On the seismogram of this event, we have identified seismic wave precursors, i.e., underside reflections off a subsurface discontinuity halfway between the marsquake and the instrument, which directly constrain the crustal structure away (about 4100-4500 km) from the InSight landing site. Here we show that the Martian crust at the bounce point between the lander and the marsquake is characterized by a discontinuity at about 20 km depth, similar to the second (deeper) intra-crustal interface seen beneath the InSight landing site. We propose that this 20-km interface, first discovered beneath the lander, is not a local geological structure but likely a regional or global feature, and is consistent with a transition from porous to non-porous Martian crustal materials.


Assuntos
Meio Ambiente Extraterreno , Marte , Geologia
5.
Proc Natl Acad Sci U S A ; 119(42): e2204474119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215469

RESUMO

Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars' deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA's InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 [Formula: see text] 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 [Formula: see text] 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.


Assuntos
Meio Ambiente Extraterreno , Marte , Planeta Terra , Ferro , Minerais
6.
Science ; 373(6553): 434-438, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437116

RESUMO

For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.

7.
Science ; 373(6553): 443-448, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437118

RESUMO

Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.

8.
Clin Case Rep ; 9(4): 2179-2184, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936659

RESUMO

The hybrid impression technique consists of an initial alginate impression that provides a preoperative cast upon which a diagnostic wax-up and a silicone index are made. The wax-up is digitized; thus, the final altered digital impression is limited to absolute minimum time, effort and ensures comfort for the patient.

9.
Earth Space Sci ; 7(5): e2019EA000992, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32715027

RESUMO

Records of solar array currents recorded by the InSight lander during its first 200 sols on Mars are presented. In addition to the geometric variation in illumination on seasonal and diurnal timescales, the data are influenced by dust suspended in the atmosphere and deposited on the solar panels. Although no dust devils have been detected by InSight's cameras, brief excursions in solar array currents suggest that at least some of the vortices detected by transient pressure drops are accompanied by dust. A step increase in array output (i.e., a "cleaning event") was observed to be directly associated with the passage of a strong vortex. Some quasiperiodic variations in solar array current are suggestive of dust variations in the planetary boundary layer. Nonzero array outputs before sunrise and after sunset are indicative of scattering in the atmosphere: A notable increase in evening twilight currents is observed associated with noctilucent clouds, likely of water or carbon dioxide ice. Finally, although the observations are intermittent (typically a few hours per sol) and at a modest sample rate (one to two samples per minute), three single-sample light dips are seen associated with Phobos eclipses. These results demonstrate that engineering data from solar arrays provide valuable scientific situational awareness of the Martian environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA