Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Can J Microbiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700083

RESUMO

Cryptosporidium and Giardia are protozoan parasites responsible for gastrointestinal illnesses in humans and in animal species. The main way these parasites are transmitted is by ingestion of their (oo)cysts in drinking water. Monitoring (oo)cysts in water sources is beneficial to evaluate the quality of raw water supplying treatment plants. Currently, the only standardized protocol to enumerate these parasites from water samples is United States Environmental Protection Agency (USEPA) Method 1623.1. With this method, we monitored three major water sources in Quebec over a year to assess temporal and geographical variations of these parasite (oo)cysts. These three water sources have independent watersheds despite being in the same region. We found a general pattern for Giardia, with high concentrations of cysts during cold and transition periods, and significantly lower concentrations during the warm period. Cryptosporidium's concentration was more variable throughout the year. Statistical correlations (Pearson's correlation coefficients) were established between the concentration of each parasite and various environmental parameters. The three study sites each showed unique factors correlating with the presence of both protozoa, supporting the idea that each water source must be seen as a unique entity with its own particular characteristics and therefore, must be monitored independently. Although some environmental parameters could be interesting proxies to the parasitic load, no parameter was strongly correlated throughout the whole sampling year and none of the parameters could be used as a single proxy for all three studies sources.

2.
Microbiol Resour Announc ; : e0019924, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682917

RESUMO

Streptomycin thallous acetate actidione medium is typically used to isolate Brochothrix thermosphacta bacteria from food. Using this medium, three bacterial strains were isolated from the environment. Genomic sequences demonstrated that these bacteria are of the genera Lysinibacillus and Paenibacillus and are of biotechnological interest.

3.
Microorganisms ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004697

RESUMO

The plasmid known as pAsa5 is present in Aeromonas salmonicida subsp. salmonicida, a fish pathogen. The pAsa5 plasmid carries genes that are essential for the bacterium's virulence. Recombination events are known to occur in pAsa5, resulting in the loss of certain segments or the acquisition of additional genetic elements. For example, the transposon carried by the large pAsa8 plasmid was found to be inserted into the pAsa5 plasmid in the SHY16-3432 strain, enabling the addition of antibiotic resistance genes to this plasmid, which does not normally possess any. In this study, we present the isolation of additional strains carrying pAsa8. Further analyses of these strains revealed that a fusion between pAsa5 and the complete version of pAsa8 is possible. The pAsa8 transposon insertion in pAsa5 seen in the SHY16-3432 strain appears to be an aberrant event compared to the fusion of the two full-length plasmids. A 22-nucleotide sequence, present in both plasmids, serves as the site for the fusion of the two plasmids. Moreover, it is possible to introduce pAsa8 through conjugation into naive strains of A. salmonicida subsp. salmonicida and once the plasmid is within a new strain, the fusion with pAsa5 is detectable. This study reveals a previously unexplored aspect of pAsa5 plasmid biology, highlighting an additional risk for the spread of antibiotic resistance genes in A. salmonicida subsp. salmonicida.

4.
Microbiol Spectr ; 11(6): e0237823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882558

RESUMO

IMPORTANCE: The obligate intracellular Chlamydia genus contains many pathogens with a negative impact on global health and economy. Despite recent progress, there is still a lack of genetic tools limiting our understanding of these complex bacteria. This study provides new insights into genetic manipulation of Chlamydia with the opportunistic porcine pathogen Chlamydia suis, the only chlamydial species naturally harboring an antibiotic resistance gene, originally obtained by horizontal gene transfer. C. suis is transmissible to humans, posing a potential public health concern. We report that C. suis can take up vectors that lack the native plasmid, a requirement for most chlamydial transformation systems described to date. Additionally, we show that C. trachomatis, the most common cause for bacterial sexually transmitted infections and infectious blindness worldwide, can be transformed with C. suis vectors. Finally, the chromosomal region that harbors the resistance gene of C. suis is highly susceptible to complete vector integration.


Assuntos
Infecções por Chlamydia , Chlamydia , Animais , Humanos , Suínos , Chlamydia/genética , Chlamydia trachomatis , Infecções por Chlamydia/microbiologia , Antibacterianos , Vetores Genéticos
5.
Microbiol Resour Announc ; 12(10): e0062623, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37772837

RESUMO

The bacterium Staphylococcus hyicus causes porcine exudative epidermitis in piglets, which represents both health and welfare concerns. Few genome sequences of this pathogen are published. We provide four additional ones to help future genomic analysis of S. hyicus. These are genomes of strains isolated from Canadian swine.

6.
Microorganisms ; 11(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317163

RESUMO

For a long time, the bacterial species Aeromonas salmonicida seemed to be limited to a regrouping of psychrophilic subspecies that infect fish, particularly salmonids [...].

7.
Virus Res ; 334: 199165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385348

RESUMO

Aeromonas salmonicida subsp. salmonicida is a Gam-negative bacterium responsible for furunculosis in fish. Because this aquatic bacterial pathogen has a rich reservoir of antibiotic-resistant genes, it is essential to investigate antibacterial alternatives, including the use of phages. Yet, we have previously demonstrated the inefficiency of a phage cocktail designed against A. salmonicida subsp. salmonicida strains due to a phage resistance phenotype associated to a prophage, namely Prophage 3. To bypass this resistance, one of the solutions is to isolate novel phages capable of infecting Prophage 3-bearing strains. Here we report on the isolation and characterization of the new virulent phage vB_AsaP_MQM1 (or MQM1), which is highly specific to A. salmonicida subsp. salmonicida strains. Phage MQM1 inhibited the growth of 01-B516, a strain carrying Prophage 3, including when combined to the previous phage cocktail. MQM1 infected 26 out of the 30 (87%) Prophage 3-bearing strains tested. Its linear dsDNA genome contains 63,343 bp, with a GC content of 50.2%. MQM1 genome can encode 88 proteins and 8 tRNAs, while no integrase or transposase-encoding genes were found. This podophage has an icosahedral capsid and a non-contractile short tail. We suggest that MQM1 may be a good addition to future phage cocktails against furunculosis to resolve the Prophage 3-resistance issue.


Assuntos
Aeromonas salmonicida , Bacteriófagos , Furunculose , Animais , Bacteriófagos/genética , Furunculose/microbiologia , Prófagos/genética , Aeromonas salmonicida/genética , Peixes
8.
BMC Genomics ; 24(1): 93, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859182

RESUMO

BACKGROUND: The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS: A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION: It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.


Assuntos
Candida albicans , Farneseno Álcool , Substituição de Aminoácidos , Aminoácidos , Aclimatação
9.
Genome ; 66(5): 108-115, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780641

RESUMO

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Assuntos
Aeromonas salmonicida , Dictyostelium , Animais , Aeromonas salmonicida/genética , Filogenia , Canadá , Análise por Conglomerados
10.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830168

RESUMO

Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.

11.
Arch Virol ; 168(2): 72, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670249

RESUMO

Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.


Assuntos
Aeromonas salmonicida , Aeromonas , Doenças dos Peixes , Furunculose , Animais , Prófagos/genética , Aeromonas salmonicida/genética , Furunculose/microbiologia , Peixes , Doenças dos Peixes/microbiologia
12.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36009916

RESUMO

Aeromonas salmonicida subsp. salmonicida is a pathogenic bacterium responsible for furunculosis in salmonids. Following an outbreak of furunculosis, the infection can be treated with antibiotics, but it is common to observe ineffective treatment due to antibiotic resistance. This bacterium has a wide variety of plasmids responsible for this resistance. Among them, pRAS3 carries a tetracycline resistance gene. Several variants of this plasmid have been discovered over the years (pRAS3-3432 and pRAS3.1 to 3.4). During the present study, two new variants of the plasmid pRAS3 were identified (pRAS3.5 and pRAS3-3759) in strains of A. salmonicida subsp. salmonicida. Plasmid pRAS3-3759, which has been found in many strains from the same region over the past three years, has an additional genetic element identical to one found in pRAS3-3432. This genetic element was also found in Chlamydia suis, a swine pathogen. In this study, we analyzed the bacteria's resistance to tetracycline, the number of copies of the plasmids, and the growth of the strains that carry five of the pRAS3 variants (pRAS3.3 to 3.5, pRAS3-3432, and pRAS3-3759). The results show no particular trend despite the differences between the plasmids, except for the resistance to tetracycline when analyzed in an isogenic background. Blast analysis also revealed the presence of pRAS3 plasmids in other bacterial species, which suggests that this plasmid family has widely spread. This study once again highlights the ability of A. salmonicida subsp. salmonicida to adapt to furunculosis antibiotic treatments, and the still-growing family of pRAS3 plasmids.

13.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884228

RESUMO

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

14.
BMC Res Notes ; 15(1): 254, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841071

RESUMO

OBJECTIVE: This study was designed to find a method to enhance the recovery of Cryptosporidium spp. and Giardia spp. parasites from water samples for research purposes compared to the results that can be achieved with USEPA Method 1623.1. Four different approaches were used to test water samples that were artificially spiked with parasites. The approaches were: (i) Method 1623.1 itself, (ii) elution of Method 1623.1 combined with microfiltration, (iii) an elution technique based on grinding the filter membrane in a blender before the eluent was concentrated by immunomagnetic separation, and (iv) the blender elution followed by microfiltration. Fluorescence microscopy was used to determine which approach led to the highest parasite recovery rates. RESULTS: Method 1623.1 gave the best results for Giardia, while all four approaches were statistically equivalent for Cryptosporidium. We evaluated the costs and laboratory time requirements for each protocol to give readers a complete comparison of the methods tested. Elution of Method 1623.1 combined with microfiltration resulted in lower costs and less laboratory work time without compromising the recovery of the parasites.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Animais , Giardia , Giardíase/diagnóstico , Separação Imunomagnética , Oocistos , Estados Unidos , United States Environmental Protection Agency , Água
15.
FEMS Microbiol Lett ; 369(1)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883218

RESUMO

Worldwide, Aeromonas salmonicida is a major bacterial pathogen of fish in both marine and freshwater environments. Despite psychrophilic growth being common for this species, the number of characterized mesophilic strains is increasing. Thus, this species may serve as a model for the study of intraspecies lifestyle diversity. Although bacteria are preyed upon by protozoan predators, their interaction inside or outside the phagocytic pathway of the predator can provide several advantages to the bacteria. To correlate intraspecies diversity with predation outcome, we studied the fate of psychrophilic and mesophilic strains of A. salmonicida cocultured with the ciliate Tetrahymena pyriformis. A total of three types of outcome were observed: digestion, resistance to phagocytosis, and pathogenicity. The psychrophilic strains are fully digested by the ciliate. In contrast, the mesophilic A. salmonicida subsp. pectinolytica strain is pathogenic to the ciliate. All the other mesophilic strains display mechanisms to resist phagocytosis and/or digestion, which allow them to survive ciliate predation. In some cases, passage through the phagocytic pathway resulted in a few mesophilic A. salmonicida being packaged inside fecal pellets. This study sheds light on the great phenotypic diversity observed in the complex range of mechanisms used by A. salmonicida to confront a predator.


Assuntos
Aeromonas salmonicida , Aeromonas , Doenças dos Peixes , Tetrahymena pyriformis , Aeromonas salmonicida/genética , Animais , Doenças dos Peixes/microbiologia , Peixes , Virulência
16.
Microorganisms ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744692

RESUMO

Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.

17.
Microorganisms ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35208695

RESUMO

The bacterium Aeromonas salmonicida has long been known to be one of the most feared pathogens in fish farming. However, the more we discover about this bacterial species, the more we question whether it is really exclusively an aquatic pathogen. In recent years, it has become obvious that this bacterial species includes a myriad of strains with various lifestyle and ecological niches, including the well-known strict psychrophiles, the first bacteria known of the species, and the newly described mesophilic strains. The mesophiles are able to grow at low temperatures, but even better at temperatures of approximately 37 °C, which strict psychrophiles cannot do. In this perspective article, we address some aspects surrounding this dual lifestyle in A. salmonicida, including the impact of mobile genetic elements, and how future research around this bacterial species may focus on the psychrophilic/mesophilic dichotomy, which makes A. salmonicida an increasingly interesting and relevant model for the study of speciation.

18.
Microorganisms ; 10(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056638

RESUMO

Aeromonas salmonicida is a global distributed Gram-negative teleost pathogen, affecting mainly salmonids in fresh and marine environments. A. salmonicida strains are classified as typical or atypical depending on their origin of isolation and phenotype. Five subspecies have been described, where A. salmonicida subsp. salmonicida is the only typical subspecies, and the subsp. achromogenes, masoucida, smithia, and pectinolytica are considered atypical. Genomic differences between A. salmonicida subsp. salmonicida isolates and their relationship with the current classification have not been explored. Here, we sequenced and compared the complete closed genomes of four virulent strains to elucidate their molecular diversity and pathogenic evolution using the more accurate genomic information so far. Phenotypes, biochemical, and enzymatic profiles were determined. PacBio and MiSeq sequencing platforms were utilized for genome sequencing. Comparative genomics showed that atypical strains belong to the subsp. salmonicida, with 99.55% ± 0.25% identity with each other, and are closely related to typical strains. The typical strain A. salmonicida J223 is closely related to typical strains, with 99.17% identity with the A. salmonicida A449. Genomic differences between atypical and typical strains are strictly related to insertion sequences (ISs) activity. The absence and presence of genes encoding for virulence factors, transcriptional regulators, and non-coding RNAs are the most significant differences between typical and atypical strains that affect their phenotypes. Plasmidome plays an important role in A. salmonicida virulence and genome plasticity. Here, we determined that typical strains harbor a larger number of plasmids and virulence-related genes that contribute to its acute virulence. In contrast, atypical strains harbor a single, large plasmid and a smaller number of virulence genes, reflected by their less acute virulence and chronic infection. The relationship between phenotype and A. salmonicida subspecies' taxonomy is not evident. Comparative genomic analysis based on completed genomes revealed that the subspecies classification is more of a reflection of the ecological niche occupied by bacteria than their divergences at the genomic level except for their accessory genome.

19.
Antibiotics (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052984

RESUMO

Technological innovations and quality control processes within blood supply organizations have significantly improved blood safety for both donors and recipients. Nevertheless, the risk of transfusion-transmitted infection remains non-negligible. Applying a nanoparticular, antibacterial coating at the surface of medical devices is a promising strategy to prevent the spread of infections. In this study, we characterized the antibacterial activity of an SiO2 nanoparticular coating (i.e., the "Medical Antibacterial and Antiadhesive Coating" [MAAC]) applied on relevant polymeric materials (PM) used in the biomedical field. Electron microscopy revealed a smoother surface for the MAAC-treated PM compared to the reference, suggesting antiadhesive properties. The antibacterial activity was tested against selected Gram-positive and Gram-negative bacteria in accordance with ISO 22196. Bacterial growth was significantly reduced for the MAAC-treated PVC, plasticized PVC, polyurethane and silicone (90-99.999%) in which antibacterial activity of ≥1 log reduction was reached for all bacterial strains tested. Cytotoxicity was evaluated following ISO 10993-5 guidelines and L929 cell viability was calculated at ≥90% in the presence of MAAC. This study demonstrates that the MAAC could prevent bacterial contamination as demonstrated by the ISO 22196 tests, while further work needs to be done to improve the coating processability and effectiveness of more complex matrices.

20.
J Fish Dis ; 45(1): 177-184, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748248

RESUMO

Aeromonas salmonicida subspecies salmonicida, a fish pathogen, expresses various virulence factors such as an A-layer, lipases and proteases during the infection process. Not all strains of this bacterium express the same virulence factors. It is important to be able to evaluate which factors are present when characterizing strains. The A-layer and secreted lipases and proteases are usually detected by agar-based tests that require long incubation (24 h and more) and may provide ambiguous results. In the present study, protocols have been optimized to determine the presence of these virulence factors using liquid tests. For A-layer detection, the optimized method stains the positive bacteria with Coomassie Brilliant Blue. The lipases are detected by a colorimetric biochemical reaction triggered by the degradation of p-nitrophenyl dodecanoate into a yellow product detectable by spectrophotometry, if the result is positive. Both of these tests show results in less than an hour. Finally, the protease activity is measured by clarification of a medium containing milk during an overnight bacterial growth. These new protocols provide opportunities for quicker characterization of A. salmonicida subsp. salmonicida strains and, particularly, provide more precise results.


Assuntos
Aeromonas salmonicida , Aeromonas , Doenças dos Peixes , Animais , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA