Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38948773

RESUMO

Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.

2.
Curr Biol ; 34(15): 3506-3521.e5, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059392

RESUMO

Sensory adaptation is the process whereby brain circuits adjust neuronal activity in response to redundant sensory stimuli. Although sensory adaptation has been extensively studied for individual neurons on timescales of tens of milliseconds to a few seconds, little is known about it over longer timescales or at the population level. We investigated population-level adaptation in the barrel field of the mouse somatosensory cortex (S1BF) using in vivo two-photon calcium imaging and Neuropixels recordings in awake mice. Among stimulus-responsive neurons, we found both adapting and facilitating neurons, which decreased or increased their firing, respectively, with repetitive whisker stimulation. The former outnumbered the latter by 2:1 in layers 2/3 and 4; hence, the overall population response of mouse S1BF was slightly adapting. We also discovered that population adaptation to one stimulus frequency (5 Hz) does not necessarily generalize to a different frequency (12.5 Hz). Moreover, responses of individual neurons to repeated rounds of stimulation over tens of minutes were strikingly heterogeneous and stochastic, such that their adapting or facilitating response profiles were not stable across time. Such representational drift was particularly striking when recording longitudinally across 8-9 days, as adaptation profiles of most whisker-responsive neurons changed drastically from one day to the next. Remarkably, repeated exposure to a familiar stimulus paradoxically shifted the population away from strong adaptation and toward facilitation. Thus, the adapting vs. facilitating response profile of S1BF neurons is not a fixed property of neurons but rather a highly dynamic feature that is shaped by sensory experience across days.


Assuntos
Adaptação Fisiológica , Córtex Somatossensorial , Vibrissas , Animais , Córtex Somatossensorial/fisiologia , Camundongos , Vibrissas/fisiologia , Adaptação Fisiológica/fisiologia , Masculino , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Estimulação Física
3.
J Neurosci ; 43(43): 7158-7174, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37669860

RESUMO

Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part because of the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring an array of complex behavioral responses with high resolution cameras. We focused on social touch to the face because of its high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knock-out (KO) model of Fragile X syndrome (FXS) and maternal immune activation (MIA) mice. We observed higher rates of avoidance running, hyperarousal, and aversive facial expressions (AFEs) to social touch than to object touch, in both ASD models compared with controls. Fmr1 KO mice showed more AFEs to mice of the same sex but whether they were stranger or familiar mice mattered less. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it could be used to uncover underlying circuit differences.SIGNIFICANCE STATEMENT Social touch is important for communication in animals and humans. However, it has not been extensively studied and current assays to measure animals' responses to social touch have limitations. We present a novel head-fixed assay to quantify how mice respond to social facial touch with another mouse. We validated this assay in autism mouse models since autistic individuals exhibit differences in social interaction and touch sensitivity. We find that mouse models of autism exhibit more avoidance, hyperarousal, and aversive facial expressions (AFEs) to social touch compared with controls. Thus, this novel assay can be used to investigate behavioral responses to social touch and the underlying brain mechanisms in rodent models of neurodevelopmental conditions, and to evaluate therapeutic responses in preclinical studies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Humanos , Camundongos , Animais , Transtorno Autístico/genética , Tato , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
4.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711563

RESUMO

Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part due to the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring with high frame rate cameras an array of complex behavioral responses. We focused on social touch to the face because of their high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knockout model of Fragile X Syndrome and maternal immune activation mice. We observed increased avoidance, hyperarousal, and more aversive facial expressions to social touch, but not to object touch, in both ASD models compared to controls. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it should be of interest to neuroscientists interested in uncovering the underlying circuits.

5.
Front Behav Neurosci ; 14: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714163

RESUMO

Female animals in biomedical research have traditionally been excluded from research studies due to the perceived added complexity caused by the estrus cycle. However, given the importance of sex differences in a variety of neurological disorders, testing female mice is critical to identifying sex-linked effects in diseases. To determine the susceptibility of simple behaviors to hormonal fluctuations in the estrus cycle, we studied the effects of sex and the estrus cycle on a variety of behavioral tasks commonly used in mouse phenotyping laboratories. Male and female C57BL/6J mice were tested in a small battery of short duration tests and, immediately on completion of each test, females were classified using cytology of vaginal lavages as sexually-receptive (proestrus and estrus) or non-receptive (NR; metestrus and diestrus). We showed that there was a significant difference in 3-chamber social interaction (SI) between female mice at different stages of their estrus cycle, with sexually-receptive mice showing no preferential interest in a novel female mouse compared with an empty chamber. NR female mice showed the same level of preference for a novel female mouse as male mice did for a novel male mouse. No differences between or within sexes were found for tests of anxiety elevated plus maze (EPM; Hole board), working memory [Novel object recognition (NOR)], and motor learning (repeated tests on rotarod). We conclude that the stage of the estrus cycle may impact SI between same-sex conspecifics, and does not impact performance in the elevated plus-maze, hole board, NOR, and rotarod.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA