Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Science ; 382(6677): 1389-1394, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38060673

RESUMO

Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.


Assuntos
Inibição Neural , Plasticidade Neuronal , Receptores de GABA , Transmissão Sináptica , Ácido gama-Aminobutírico , Animais , Camundongos , Ácido gama-Aminobutírico/metabolismo , Glutamato Desidrogenase/metabolismo , Hipocampo/metabolismo , Receptores de GABA/metabolismo , Sinapses/fisiologia , Camundongos Knockout , Racemases e Epimerases/genética
2.
PLoS Biol ; 19(8): e3001375, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428203

RESUMO

Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.


Assuntos
Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Modelos Neurológicos , Células Piramidais/ultraestrutura , Animais , Sinalização do Cálcio , Espinhas Dendríticas/fisiologia , Feminino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Plasticidade Neuronal , Gravidez , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/ultraestrutura
3.
Curr Opin Neurobiol ; 66: 85-92, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130410

RESUMO

Trans-synaptic interactions organize the multiple steps of synaptic development and are critical to generate fully functional neuronal circuits. While trans-synaptic interactions are primarily mediated by cell adhesion molecules (CAMs), some directly involve ionotropic glutamate receptors (iGluRs). Here, we review the expanding extracellular and trans-synaptic proteome of iGluRs. We discuss the role of these molecular networks in specifying the formation of excitatory and inhibitory circuits and in the input-specific recruitment of iGluRs at synapses in various cell types and brain regions. We also shed light on human-specific mutations affecting iGluR-mediated trans-synaptic interactions that may provide unique features to the human brain and contribute to its susceptibility to neurodevelopmental disorders. Together, these data support a view in which iGluR function goes far beyond fast excitatory synaptic transmission by shaping the wiring and the functional properties of neural circuits.


Assuntos
Receptores Ionotrópicos de Glutamato , Transmissão Sináptica , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Sinapses/metabolismo
4.
Neuron ; 104(6): 1081-1094.e7, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31704028

RESUMO

Fine orchestration of excitatory and inhibitory synaptic development is required for normal brain function, and alterations may cause neurodevelopmental disorders. Using sparse molecular manipulations in intact brain circuits, we show that the glutamate receptor delta-1 (GluD1), a member of ionotropic glutamate receptors (iGluRs), is a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. GluD1 is selectively required for the formation of inhibitory synapses and regulates GABAergic synaptic transmission accordingly. At inhibitory synapses, GluD1 interacts with cerebellin-4, an extracellular scaffolding protein secreted by somatostatin-expressing interneurons, which bridges postsynaptic GluD1 and presynaptic neurexins. When binding to its agonist glycine or D-serine, GluD1 elicits non-ionotropic postsynaptic signaling involving the guanine nucleotide exchange factor ARHGEF12 and the regulatory subunit of protein phosphatase 1 PPP1R12A. Thus, GluD1 defines a trans-synaptic interaction regulating postsynaptic signaling pathways for the proper establishment of cortical inhibitory connectivity and challenges the dichotomy between iGluRs and inhibitory synaptic molecules.


Assuntos
Neurogênese/fisiologia , Células Piramidais/fisiologia , Receptores de Glutamato/metabolismo , Sinapses/fisiologia , Animais , Córtex Cerebral/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
5.
J Neurosci ; 37(45): 10792-10799, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118207

RESUMO

Inhibitory circuits are diverse, yet with a poorly understood cell biology. Functional characterization of distinct inhibitory neuron subtypes has not been sufficient to explain how GABAergic neurotransmission sculpts principal cell activity in a relevant fashion. Our Mini-Symposium brings together several emerging mechanisms that modulate GABAergic neurotransmission dynamically from either the presynaptic or the postsynaptic site. The first two talks discuss novel developmental and neuronal subtype-specific contributions to the excitatory/inhibitory balance and circuit maturation. The next three talks examine how interactions between cellular pathways, lateral diffusion of proteins between synapses, and chloride transporter function at excitatory and inhibitory synapses and facilitate inhibitory synapse adaptations. Finally, we address functional differences within GABAergic interneurons to highlight the importance of diverse, flexible, and versatile inputs that shape network function. Together, the selection of topics demonstrates how developmental and activity-dependent mechanisms coordinate inhibition in relation to the excitatory inputs and vice versa.


Assuntos
Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Humanos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal
6.
Neuron ; 91(2): 356-69, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27373832

RESUMO

The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal neurons in vivo. SRGAP2A promotes synaptic maturation, and ultimately the synaptic accumulation of AMPA and GABAA receptors, by interacting with key components of both excitatory and inhibitory postsynaptic scaffolds, Homer and Gephyrin. Furthermore, SRGAP2A limits the density of both types of synapses via its Rac1-GAP activity. SRGAP2C inhibits all identified functions of SRGAP2A, protracting the maturation and increasing the density of excitatory and inhibitory synapses. Our results uncover a molecular mechanism coordinating critical features of synaptic development and suggest that human-specific duplication of SRGAP2 might have contributed to the emergence of unique traits of human neurons while preserving the excitation/inhibition balance.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Inibição Neural/fisiologia , Sinapses/fisiologia , Humanos , Neurogênese/genética , Neurogênese/fisiologia , Técnicas de Patch-Clamp/métodos , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
8.
Cell ; 149(4): 923-35, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22559944

RESUMO

Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Proteínas Ativadoras de GTPase/genética , Duplicação Gênica , Neurônios/citologia , Duplicações Segmentares Genômicas , Animais , Movimento Celular , Espinhas Dendríticas/metabolismo , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína , Especificidade da Espécie
9.
Nat Neurosci ; 13(11): 1388-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20935643

RESUMO

The regulation of glycine receptor (GlyR) number at synapses is necessary for the efficacy of inhibition and the control of neuronal excitability in the spinal cord. GlyR accumulation at synapses depends on the scaffolding molecule gephyrin and is linked to GlyR synaptic dwell time. However, the mechanisms that tune GlyR synaptic exchanges in response to different neuronal environments are unknown. Integrins are cell adhesion molecules and signaling receptors. Using single quantum dot imaging and fluorescence recovery after photobleaching, we found in rats that ß1 and ß3 integrins adjust synaptic strength by regulating the synaptic dwell time of both GlyRs and gephyrin. ß1 and ß3 integrins crosstalked via calcium/calmodulin-dependent protein kinase II and adapted GlyR lateral diffusion and gephyrin-dependent trapping at synapses. This provides a mechanism for maintaining or adjusting the steady state of postsynaptic molecule exchanges and the level of glycinergic inhibition in response to neuron- and glia-derived signals or extracellular matrix remodeling.


Assuntos
Proteínas de Transporte/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Receptores de Glicina/metabolismo , Sinapses/fisiologia , Animais , Benzilaminas/farmacologia , Biotinilação/métodos , Proteínas de Transporte/genética , Células Cultivadas , Embrião de Mamíferos , Fibrinogênio/farmacologia , Integrina beta1/farmacologia , Integrina beta3/farmacologia , Espectrometria de Massas/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Fosforilação , Fotodegradação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glicina/genética , Medula Espinal/citologia , Estatísticas não Paramétricas , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Trombospondina 1/farmacologia
10.
Neuron ; 59(2): 261-73, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18667154

RESUMO

In the spinal cord, most inhibitory synapses have a mixed glycine-GABA phenotype. Using a pharmacological approach, we report an NMDAR activity-dependent regulation of the mobility of GlyRs but not GABA(A)Rs at inhibitory synapses in cultured rat spinal cord neurons. The NMDAR-induced decrease in GlyR lateral diffusion was correlated with an increase in receptor cluster number and glycinergic mIPSC amplitude. Changes in GlyR diffusion properties occurred rapidly and before the changes in the number of synaptic receptors. Regulation of synaptic GlyR content occurred without change in the amount of gephyrin. Moreover, NMDAR-dependent regulation of GlyR lateral diffusion required calcium influx and calcium release from stores. Therefore, excitation may increase GlyR levels at synapses by a calcium-mediated increase in postsynaptic GlyR trapping involving regulation of receptor-scaffold interactions. This provides a mechanism for a rapid homeostatic regulation of the inhibitory glycinergic component at mixed glycine-GABA synapses in response to increased NMDA excitatory transmission.


Assuntos
Homeostase/fisiologia , Receptores de Glicina/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Difusão , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
11.
J Neurosci ; 26(33): 8502-11, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16914675

RESUMO

Lateral diffusion of neurotransmitter receptors in and out of synapses has been postulated as a core mechanism for rapid changes in receptor number at synapses during plastic processes. In this study, we have used single particle tracking to investigate how changes in glycine receptor (GlyR) lateral diffusion properties might account for changes in receptor number at synapses after disruption of the cytoskeleton in dissociated spinal cord neurons. We found that pharmacological disruption of F-actin and microtubules decreased the amount of GlyR and gephyrin, the backbone of the inhibitory postsynaptic scaffold, at synapses. F-actin and microtubule disruption increased GlyR exchanges between the synaptic and extrasynaptic membranes and decreased receptor dwell time at synapses. GlyR lateral diffusion was predominantly controlled by microtubules in the extrasynaptic membrane and by actin at synapses. Both diffusion coefficients and confinement at synapses were affected after F-actin disruption. Our results indicate that receptor exchanges between the synaptic and extrasynaptic compartments depend on the properties of both the postsynaptic differentiation and the extrasynaptic membrane. Consequently, GlyR number at synapses may be rapidly modulated by the cytoskeleton through the regulation of lateral diffusion in the plasma membrane and of receptor stabilization at synapses.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/fisiologia , Neurônios/metabolismo , Receptores de Glicina/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo , Actinas/fisiologia , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas de Membrana/metabolismo , Microtúbulos/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA