Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(6): e0029224, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700347

RESUMO

Here, we report the draft genome of Aureococcus anophagefferens strain CCMP1851, which is susceptible to the virus Kratosvirus quantuckense. CCMP1851 complements an available genome for a virus-resistant strain (CCMP1850) isolated from the same bloom. Future studies can now use this genome to examine genetic hints of virus resistance and susceptibility.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366077

RESUMO

The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.


Assuntos
Diatomáceas , Diatomáceas/genética , Ecossistema , Camada de Gelo , Lagos , Água
3.
Front Microbiol ; 14: 1284617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098665

RESUMO

Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.

4.
Virus Evol ; 8(2): veac068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949392

RESUMO

In this study, we aimed at exploring horizontal gene transfer between viruses and Chlorodendraceae green algae (Chlorophyta) using available genomic and transcriptomic sequences for twenty algal strains. We identified a significant number of genes sharing a higher sequence similarity with viral homologues, thus signalling their possible involvement in horizontal gene transfers with viruses. Further characterization showed that many of these genes were clustered in DNA regions of several tens to hundreds of kilobases in size, originally belonging to viruses related to known Tetraselmis spp. viruses (TetV and TsV). In contrast, the remaining candidate HGT genes were randomly dispersed in the algal genomes, were more frequently transcribed, and belonged to large multigene families. The presence of homologues in Viridiplantae suggested that the latter were more likely of algal rather than viral origin. We found a remarkable diversity in polinton-like virus (PLV) elements inserted in Tetraselmis genomes, all of which were most similar to the Tetraselmis striata virus (TsV). The genes of PLV elements are transcriptionally inactive with the notable exception of the homologue of the TVSG_00024 gene of TsV whose function is unknown. We suggest that this gene may be involved in a sentinel process to trigger virus reactivation and excision in response to an environmental stimulus. Altogether, these results provide evidence that TsV-related viruses have a dual lifestyle, alternating between a free viral phase (i.e. virion) and a phase integrated into host genomes.

5.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834969

RESUMO

Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.


Assuntos
Microalgas/virologia , Filogenia , Lagoas , Vírus de RNA/classificação , Microbiologia da Água , Animais , Biodiversidade , Biomassa , Metagenoma , Projetos Piloto , Vírus de RNA/genética , Rotíferos/virologia , Estações do Ano , Água
6.
Genes (Basel) ; 12(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440385

RESUMO

Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) in bivalve mollusks is one of the most notable departures from the paradigm of strict maternal inheritance of mtDNA among metazoans. Recently, work on the Mediterranean mussel Mytilus galloprovincialis suggested that a nucleotide motif in the control region of this species, known as the sperm transmission element (STE), helps protect male-transmitted mitochondria from destruction during spermatogenesis. Subsequent studies found similar, yet divergent, STE motifs in other marine mussels. Here, we extend the in silico search for mtDNA signatures resembling known STEs. This search is carried out for the large unassigned regions of 157 complete mitochondrial genomes from within the Mytiloida, Veneroida, Unionoida, and Ostreoida bivalve orders. Based on a sliding window approach, we present evidence that there are additional putative STE signatures in the large unassigned regions of several marine clams and freshwater mussels with DUI. We discuss the implications of this finding for interpreting the origin of doubly uniparental inheritance in ancestral bivalve mollusks, as well as potential future in vitro and in silico studies that could further refine our understanding of the early evolution of this unusual system of mtDNA inheritance.


Assuntos
Bivalves/genética , Genoma Mitocondrial , Espermatozoides/fisiologia , Animais , DNA Mitocondrial/genética , Padrões de Herança , Masculino
7.
PeerJ ; 6: e5007, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915706

RESUMO

Freshwater mussels (order: Unionida) represent one of the most critically imperilled groups of animals; consequently, there exists a need to establish a variety of molecular markers for population genetics and systematic studies in this group. Recently, two novel mitochondrial protein-coding genes were described in unionoids with doubly uniparental inheritance of mtDNA. These genes are the f-orf in female-transmitted mtDNA and the m-orf in male-transmitted mtDNA. In this study, whole F-type mitochondrial genome sequences of two morphologically similar Lampsilis spp. were compared to identify the most divergent protein-coding regions, including the f-orf gene, and evaluate its utility for population genetic and phylogeographic studies in the subfamily Ambleminae. We also tested whether the f-orf gene is phylogenetically informative at the species level. Our preliminary results indicated that the f-orf gene could represent a viable molecular marker for population- and species-level studies in freshwater mussels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA