Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Food Prot ; 83(3): 426-433, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32053830

RESUMO

ABSTRACT: Bacterial attachment on surfaces is an important biological and industrial concern. Many parameters affect cell attachment behavior, including surface roughness and other topographical features. An understanding of these relationships is critical in the light of recent outbreaks caused by foodborne bacteria. Postharvest packing lines have been identified as a potential source of cross-contamination with pathogens, which can cause subsequent foodborne illness. The objective of this article is to evaluate the influence of surface topographical features on bacterial attachment at various processing temperatures to determine the extent of bacterial colonization. Type 304 stainless steel surfaces and pathogenic Listeria monocytogenes Scott A were used for a detailed investigation. Two commonly used surface types, extruded and ground, were evaluated to determine differences in bacterial attachment on the same type of material. Fifteen surface topography parameters at three processing temperatures were studied to evaluate possible correlations with microbial attachment on these surfaces. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and confocal microscopy were used for both qualitative and quantitative analyses of surfaces. An analysis of variance and multivariate regression analysis were used to predict the attachment behavior of L. monocytogenes Scott A on stainless steel surfaces. Surface isotropy, average surface roughness, surface spacing, and processing temperatures were strongly correlated with bacterial attachment on 304 stainless steel material.


Assuntos
Aderência Bacteriana , Contaminação de Equipamentos , Listeria monocytogenes , Biofilmes , Contaminação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/fisiologia , Aço Inoxidável , Temperatura
2.
Microorganisms ; 7(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569566

RESUMO

This randomized controlled trial characterized the transfer of E. coli from animal feces and/or furrow water onto adjacent heads of lettuce during foliar irrigation, and the subsequent survival of bacteria on the adaxial surface of lettuce leaves. Two experiments were conducted in Salinas Valley, California: (1) to quantify the transfer of indicator E. coli from chicken and rabbit fecal deposits placed in furrows to surrounding lettuce heads on raised beds, and (2) to quantify the survival of inoculated E. coli on Romaine lettuce over 10 days. E. coli was recovered from 97% (174/180) of lettuce heads to a maximal distance of 162.56 cm (5.33 ft) from feces. Distance from sprinklers to feces, cumulative foliar irrigation, and lettuce being located downwind of the fecal deposit were positively associated, while distance from fecal deposit to lettuce was negatively associated with E. coli transference. E. coli exhibited decimal reduction times of 2.2 and 2.5 days when applied on the adaxial surface of leaves within a chicken or rabbit fecal slurry, respectively. Foliar irrigation can transfer E. coli from feces located in a furrow onto adjacent heads of lettuce, likely due to the kinetic energy of irrigation droplets impacting the fecal surface and/or impacting furrow water contaminated with feces, with the magnitude of E. coli enumerated per head of lettuce influenced by the distance between lettuce and the fecal deposit, cumulative application of foliar irrigation, wind aspect of lettuce relative to feces, and time since final irrigation. Extending the time period between foliar irrigation and harvest, along with a 152.4 cm (5 ft) no-harvest buffer zone when animal fecal material is present, may substantially reduce the level of bacterial contamination on harvested lettuce.

3.
Environ Monit Assess ; 191(7): 456, 2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31230187

RESUMO

The objective of the study was to assess the microbiological safety of popular recreational swimming sites in Central California. Water samples were collected from eleven monitoring sites across the lower reaches of two watersheds for two consecutive swimming seasons (2012-2013), and levels of indicator and pathogenic microorganisms were determined. Data on ambient weather and water chemistry were collected for analyzing their associations with microorganisms in water. All water samples were positive for indicator E. coli with mean concentrations per site ranging from 3.07 to 216.11 MPN/100 ml in 2012 and 13.4 to 226.97 MPN/100 ml in 2013. Mean E. coli concentrations in 27% and 36% samplings sites exceeded the EPA 2012 Recreational Water Quality Criteria recommended mean concentration of ≤ 126 CFU/100 ml of E. coli, in 2012 and 2013, respectively. Cryptosporidium spp. oocysts were detected in all water samples from all sampling sites, with an overall prevalence of 50% and mean concentrations of 0.08 oocysts/l in 2012 and 0.19 oocysts/l in 2013. Giardia spp. cysts were detected at eight sites, with an overall prevalence of 28.8% and mean concentration of 0.2 cysts/l in both years. The majority of the detected Cryptosporidium spp. oocysts and Giardia spp. cysts appeared damaged under microscopy. E. coli O157:H7 was detected in 9% of water samples, with positive samples limited to three sites. Salmonella spp. were detected in all but one site across the two years, with mean concentrations of 0.94 MPN/l in 2012 and 1.85 MPN/l in 2013. Cryptosporidium spp. oocyst concentrations were negatively associated with 30-day mean wind speed and cumulative precipitation and dissolved oxygen in water. Giardia spp. cyst concentrations were positively associated with turbidity and pH of water and negatively associated with E. coli concentrations and 24-h mean air temperature. Salmonella spp. concentrations were positively associated with 30-day mean air temperature. The occurrence of E. coli O157:H7 was positively associated with previous 30-day cumulative precipitation.


Assuntos
Cryptosporidium/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli O157/isolamento & purificação , Giardia/isolamento & purificação , Oocistos/isolamento & purificação , Salmonella/isolamento & purificação , Qualidade da Água , Água/parasitologia , Animais , California , Parques Recreativos , Estações do Ano , Natação , Microbiologia da Água , Tempo (Meteorologia)
4.
PeerJ ; 7: e6591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867998

RESUMO

Field trials were conducted in July-August and October 2012 to quantify the inactivation rate of Escherichia coli O157:H7 when mixed with fecal slurry and applied to romaine lettuce leaves. Lettuce was grown under commercial conditions in Salinas Valley, California. One-half milliliter of rabbit, chicken, or pig fecal slurry, containing an average of 4.05 × 107 CFU E. coli O157:H7 (C0), was inoculated onto the upper (adaxial) surface of a lower leaf on 288 heads of lettuce per trial immediately following a 2.5 h irrigation event. To estimate the bacterial inactivation rate as a function of time, fecal matrix, irrigation and seasonal climate effects, sets of lettuce heads (n = 28) were sampled each day over 10 days and the concentration of E. coli O157:H7 (Ct) determined. E. coli O157:H7 was detected on 100% of heads during the 10-day duration, with concentrations ranging from ≤340 MPN/head (∼5-log reduction) to >3.45 × 1012 MPN/head (∼5-log growth). Relative to C0, on day 10 (Ct = 12) we observed an overall 2.6-log and 3.2-log mean reduction of E. coli O157:H7 in July and October, respectively. However, we observed relative maximum concentrations due to bacterial growth on day 6 (maximum Ct = 8) apparently stimulated by foliar irrigation on day 5. From this maximum there was a mean 5.3-log and 5.1-log reduction by day 10 (Ct = 12) for the July and October trials, respectively. This study provides insight into the inactivation and growth kinetics of E. coli O157:H7 on romaine lettuce leaves under natural field conditions. This study provides evidence that harvesting within 24 h post irrigation has the potential to increase the concentration of E. coli O157:H7 contamination, if present on heads of romaine lettuce; foliar irrigation can temporarily stimulate substantial regrowth of E. coli O157:H7.

5.
J Environ Qual ; 47(5): 939-948, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272786

RESUMO

In 2011, the US Congress passed the Food Safety Modernization Act, which tasks the US Food and Drug Administration to establish microbiological standards for agricultural water. However, little data are available for the microbiological quality of surface water irrigation supplies. During the 2015 irrigation season, we conducted a baseline study on the microbial water quality of large irrigation districts in California ( = 2) and Washington ( 4). Monthly samples ( 517) were analyzed for bacterial indicators (fecal coliforms, enterococci, and ) and pathogens ( spp., O157, and non-O157 Shiga toxin-producing [STEC]). Although there was a high degree of variability (µ ± SD = 59.13 ± 106.0), only 11% of samples (56/517) exceeded 126 colony-forming units (CFU) 100 mL, and only six samples exceeded 410 CFU 100 mL. Two volumes of water were collected for pathogen analysis (1 L and 10 L); prevalence of in 10-L samples (68149) was nearly double of that found in 1-L samples (132/517). We found STEC during ∼9% of sampling events (58/517); serotypes O26 and O45 were the most common at 31 and 26%, respectively. Pathogens were not associated with exceedance of the regulatory threshold, yet the odds of detecting increased approximately threefold (odds ration [O.R.] = 3.14, 0.0001) for every log increase in turbidity. Microbiological outcomes were highly district-specific, suggesting drivers of water quality vary across spatiotemporal scales. The true risk of contamination of produce from irrigation water supplies remains unknown, along with the optimal monitoring strategy to improve food safety.


Assuntos
Escherichia coli Shiga Toxigênica , Abastecimento de Água , Agricultura , California , Fezes , Microbiologia de Alimentos , Qualidade da Água
6.
Water Res ; 129: 436-446, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179123

RESUMO

California has one of the largest systems of surface water reservoirs in the world, providing irrigation water to California's agriculturally productive Central Valley. Irrigation water is recognized as a vehicle for the microbial contamination of raw produce and must be monitored according to new federal regulation. The purpose of this study was to further understanding of the variability of fecal indicator bacteria (Escherichia coli and fecal coliforms) and pathogens (E. coli O157:H7 (O157), non-O157 Shiga toxin-producing E. coli (STEC) and Salmonella) along both horizontal and vertical profiles within California reservoirs. Monthly sampling was conducted in six reservoirs located in the foothills of the Western Sierra Nevada during the summer irrigation season and extreme drought conditions of 2014 (n = 257). Concentrations of fecal indicator bacteria were highly variable between reservoirs (p < 0.05) and along the horizontal profile (p < 0.001) from upstream to downstream, with higher concentrations typically found outside of the reservoirs than within. Though many of the reservoirs were thermally stratified, bacterial concentrations were not associated with water temperature (p > 0.05) or any one particular depth strata (p < 0.05). However, prevalence of Salmonella and STEC (16/70 and 9/70 respectively) was higher in the deep strata than in mid or surface layers. We found no statistical association between samples collected downstream of reservoirs and those from the reservoirs themselves. Continued monitoring and modeling of both bacterial indicators and enteric pathogens are critical to our ability to estimate the risk of surface irrigation water supplies and make appropriate management decisions.


Assuntos
Irrigação Agrícola , Microbiologia da Água , Qualidade da Água , Abastecimento de Água , Agricultura , California , Secas , Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Salmonella/isolamento & purificação
7.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28550057

RESUMO

Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms.IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey. All isolates from this study were found to have pathogenic potential based on the presence of key virulence gene sequences. This represents a novel insight into pathogen diversity within a single subtype and will inform future attempts to survey regional pathogen populations.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Animais , California/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/classificação , Escherichia coli O157/genética , Fezes/microbiologia , Genômica , Filogenia
8.
J Food Prot ; 80(5): 792-798, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28371591

RESUMO

A field trial was conducted in July 2011 to quantify the inactivation rate of Escherichia coli O157:H7 when mixed with fecal slurry and applied to romaine lettuce leaves. Lettuce was grown under commercial conditions in Salinas Valley, CA. One-half milliliter of rabbit fecal slurry, containing 6.3 × 107 CFU of E. coli O157:H7, was inoculated onto the upper (adaxial) surface of a lower leaf on 240 heads of lettuce within 30 min after a 2.5-h irrigation event. Forty-eight romaine lettuce heads were collected per event at 2.5 h (day 0.1), 19.75 h (day 0.8), 43.25 h (day 1.8), 67.25 h (day 2.8), and 91.75 h (day 3.8) postinoculation and were analyzed for the concentration of E. coli O157:H7 (Ct). E. coli O157:H7 was detected on 100% of collected heads in concentrations ranging from 340 to 3.40 × 1010 most probable number (MPN) per head. Enumeration data indicate substantial growth of E. coli O157:H7 postinoculation (2.5 h), leading to elevated concentrations, 1 to 3 log above the starting inoculum concentration (Co). By the end of the 92-h trial, we observed a net 0.8-log mean reduction of E. coli O157:H7 compared with Co; however, after accounting for the substantial bacterial growth, there was an overall 2.3-log reduction by the final sampling event (92 h). On the basis of two different regression models that used either the raw data for Ct or log-transformed values of Ct/Co during the period 2.5 to 91.75 h postinoculation, there was an estimated 76 to 80% reduction per day in bacterial counts; however, more accurate predictions of MPN per head of lettuce were generated by using non-log-transformed values of Ct. This study provides insight into the survival of E. coli O157:H7 transferred via splash from a contaminated fecal source onto produce during irrigation. Moreover, these findings can help generate inactivation times following a potential contamination incident.

9.
J Food Prot ; 80(5): 819-828, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28387527

RESUMO

Deer mice (Peromyscus maniculatus) are abundant and widely distributed rodents in North America that occupy diverse habitats, including agricultural landscapes. Giardia and Cryptosporidium are common parasites in wildlife including deer mice, which may play a role in on-farm contamination of produce. An important step in assessing the risk of produce contamination by Cryptosporidium and Giardia shed by deer mice is to determine the prevalence, levels, and genotypes of (oo)cysts in mouse feces. A total of 63 (30.3%) and 53 (25.5%) of 208 deer mice trapped on 12 farms on the California Central Coast were positive for Cryptosporidium and Giardia, respectively. Of these mice, 41 (19.7%) contained both parasites. The odds of Cryptosporidium shedding were 2.5 to 5 times higher for mice trapped in autumn than for mice trapped in summer or spring. Female mice had a higher prevalence and two- to threefold higher levels of Cryptosporidium and Giardia compared with male mice. Female adults and female juveniles had the highest rates of contamination of the environment with Cryptosporidium and Giardia, respectively. We estimated that 20 infected deer mice inhabiting 1 ha of a typical leafy green produce farm in the study region could shed approximately 5.3 × 108 Cryptosporidium and 10.5 × 108 Giardia, respectively, per day into the environment. The small-subunit rRNA gene loci from a subset of protozoan isolates were sequenced and compared with existing sequences in GenBank. Multiple genotypes of Cryptosporidium and Giardia were found, and BLAST analyses suggest that Giardia and the majority of Cryptosporidium genotypes in deer mice circulate within various rodent populations, but some Cryptosporidium isolates possess zoonotic potential.

10.
Sci Total Environ ; 578: 346-356, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842967

RESUMO

The Sacramento-San Joaquin Delta Estuary (Delta) is the confluence of two major watersheds draining the Western Sierra Nevada mountains into the Central Valley of California, ultimately terminating into San Francisco Bay. We sampled 88 sites once a month for two years (2006-2008) over 87 separate sampling events for a total of 1740 samples. Water samples were analyzed for fecal indicator bacteria (Escherichia coli, enterococci and fecal coliforms), and 53 other physiochemical, land use, and environmental characteristics. The purpose of the study was to create a baseline of microbial water quality in the Delta and to identify various factors (climatic, land use, tidal, etc.) that were associated with elevated concentrations of indicator bacteria. Fecal indicator bacteria generally had weak to modest relationships to environmental conditions; the strength and direction of which varied for each microbial indicator, drainage region, and across seasons. Measured and unmeasured, site-specific effects accounted for large portions of variance in model predictions (ρ=0.086 to 0.255), indicating that spatial autocorrelation was a major component of water quality outcomes. The effects of tidal cycling and lack of connectivity between waterways and surrounding landscapes likely contributed to the lack of association between local land uses and microbial outcomes, though weak associations may also be indicative of mismatched spatiotemporal scales. The complex nature of this system necessitates continued monitoring and regular updates to statistical models designed to predict microbial water quality.


Assuntos
Monitoramento Ambiental , Microbiologia da Água , Qualidade da Água , Bactérias , Fezes/microbiologia , Modelos Estatísticos , São Francisco
11.
J Environ Qual ; 45(2): 657-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065413

RESUMO

Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins.


Assuntos
Agricultura , Água Subterrânea , Microbiologia da Água , Lagoas , Água
12.
J Food Prot ; 78(2): 240-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710137

RESUMO

A field trial in Salinas Valley, California, was conducted during July 2011 to quantify the microbial load that transfers from wildlife feces onto nearby lettuce during foliar irrigation. Romaine lettuce was grown using standard commercial practices and irrigated using an impact sprinkler design. Five grams of rabbit feces was spiked with 1.29 × 10(8) CFU of Escherichia coli O157:H7 and placed - 3, - 2, and - 1 days and immediately before a 2-h irrigation event. Immediately after irrigation, 168 heads of lettuce ranging from ca. 23 to 69 cm (from 9 to 27 in.) from the fecal deposits were collected, and the concentration of E. coli O157:H7 was determined. Thirty-eight percent of the collected lettuce heads had detectable E. coli O157:H7, ranging from 1 MPN to 2.30 × 10(5) MPN per head and a mean concentration of 7.37 × 10(3) MPN per head. Based on this weighted arithmetic mean concentration of 7.37 × 10(3) MPN of bacteria per positive head, only 0.00573% of the original 5 g of scat with its mean load of 1.29 × 10(8) CFU was transferred to the positive heads of lettuce. Bacterial contamination was limited to the outer leaves of lettuce. In addition, factors associated with the transfer of E. coli O157:H7 from scat to lettuce were distance between the scat and lettuce, age of scat before irrigation, and mean distance between scat and the irrigation sprinkler heads. This study quantified the transfer coefficient between scat and adjacent heads of lettuce as a function of irrigation. The data can be used to populate a quantitative produce risk assessment model for E. coli O157:H7 in romaine lettuce to inform risk management and food safety policies.


Assuntos
Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Contaminação de Alimentos/análise , Lactuca/microbiologia , Animais , Animais Selvagens , California , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Inocuidade dos Alimentos , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA