Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 11(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36553832

RESUMO

Spent coffee grounds are a promising bioresource that naturally contain around 50 wt% moisture which requires, for a valorization, a drying step of high energy and economic costs. However, the natural water in spent coffee grounds could bring new benefits as a co-solvent during the supercritical CO2 extraction (SC-CO2). This work reports the influence and optimization of pressure (115.9-284.1 bars), temperature (33.2-66.8 °C), and moisture content (6.4-73.6 wt%) on simultaneous extraction of lipids and polar molecules contained in spent coffee grounds by supercritical CO2 (SC-CO2) using Central Composite Rotatable Design and Response Surface Methodology. The results show that for lipids extraction, pressure is the most influent parameter, although the influence of moisture content is statistically negligible. This suggests that water does not act as barrier to CO2 diffusion in the studied area. However, moisture content is the most influent parameter for polar molecules extraction, composed of 99 wt% of caffeine. Mechanism investigations highlight that H2O mainly act by (i) breaking caffeine interactions with chlorogenic acids present in spent coffee grounds matrix and (ii) transferring selectively caffeine without chlorogenic acid by liquid/liquid extraction with SC-CO2. Thus, the experiment for the optimization of lipids and polar molecules extraction is performed at a pressure of 265 bars, a temperature of 55 °C, and a moisture content of 55 wt%.

2.
Plants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616211

RESUMO

Polygonum cuspidatum (P. cuspidatum) is among the world's most problematic invasive plant species with negative ecological, socio-economic and security consequences. Management operations in areas invaded systematically generate a large quantity of plant waste, most often without outlets. Using this plant material could constitute a new alternative treatment for sustainable management. P. cuspidatum is well known to have numerous biological properties, containing notably stilbenes, quinones, flavonoids and phenolic acids. The present work proposes a reliable strategy using powerful techniques for the screening and the evaluation of the dermo-cosmetic potential of its aerial parts (AP) and root parts (RP). To the best of our knowledge, only antioxidant and anti-tyrosinase activities were previously evaluated on P. cuspidatum among the targets studied (superoxide dismutase, hyaluronidase, elastase, collagenase and tyrosinase). The results revealed strong antioxidant and anti-collagenase activities, moderate anti-hyaluronidase activity, while weak anti-elastase and anti-tyrosinase activities were observed for ethanolic extracts. Different standards selected and screened on the same targets made it possible to correlate the observed residual activities of produced extracts of P. cuspidatum from Savoie Mont Blanc and their chemical compositions. A structure-activity study was thus conducted on main molecular families, widely represented in the genus Polygonum.

3.
Chemistry ; 26(44): 9665-9673, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32608524

RESUMO

Based on recent examples and initiatives reported in the literature, this concept article discusses how chemistry can contribute to the circular economy approach in order to improve our current and future economical, societal, and environmental system. Through five proposed levels of contribution, chemists can take a significant part in this global approach via the consideration of green chemistry principles, the simplification of syntheses, the limitation of complex products preparation, the efficient utilization of resources but also the novel ways of waste valorization. A more systematic and generalized environmental and economic assessment from the lab-scale is also recommended. At last, chemists have to work even more collaboratively and in a multidisciplinary way, within chemistry and beyond.

4.
Pharmaceuticals (Basel) ; 13(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024033

RESUMO

This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use of many chemicals, solvents, and processes that are very hazardous, toxic, energy consuming, expensive, and generates a large amount of waste. Many large pharmaceutical companies have thus moved to using green chemistry practices for drug discovery, development, and manufacturing. One of them is the use of energy-efficient activation techniques, such as ultrasound. This review summarizes the latest most representative works published on the use of ultrasound for sustainable bioactive molecules synthesis.

5.
Waste Manag ; 102: 782-794, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812093

RESUMO

Viticultural waste has been widely demonstrated to contain high-added value compounds named the stilbenes. Among them, trans-resveratrol (Rsv) and trans-ε-viniferin (Vf) are the most abundant in particular in grape canes. Various emerging methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) or pressurized solvent extraction (PSE) have been studied to recover Rsv and Vf from grape canes in order to enhance their extraction. This paper gives a critical overview of the techniques used to this end, integrating conventional and non-conventional methods investigated in the literature as well as those used in industrial processes. It finally highlights that the unconventional technics are usually less time-consuming than conventional extraction ones but further investigations for the discussed compounds and biomass are needed to optimize and understand the influence of the individual parameters of each extraction process.


Assuntos
Polifenóis , Vitis , Micro-Ondas , Resveratrol , Madeira
6.
Molecules ; 24(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744122

RESUMO

Oxidation of alcohols plays an important role in industrial chemistry. Novel green techniques, such as sonochemistry, could be economically interesting by improving industrial synthesis yield. In this paper, we studied the selective oxidation of benzyl alcohol as a model of aromatic alcohol compound under various experimental parameters such as substrate concentration, oxidant nature and concentration, catalyst nature and concentration, temperature, pH, reaction duration, and ultrasound frequency. The influence of each parameter was studied with and without ultrasound to identify the individual sonochemical effect on the transformation. Our main finding was an increase in the yield and selectivity for benzaldehyde under ultrasonic conditions. Hydrogen peroxide and iron sulfate were used as green oxidant and catalyst. Coupled with ultrasound, these conditions increased the benzaldehyde yield by +45% compared to silent conditions. Investigation concerning the transformation mechanism revealed the involvement of radical species.


Assuntos
Benzaldeídos/química , Álcool Benzílico/química , Oxirredução , Ondas Ultrassônicas , Catálise , Concentração de Íons de Hidrogênio , Cinética , Oxidantes/química , Temperatura
7.
Top Curr Chem (Cham) ; 378(1): 2, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31761971

RESUMO

A new field where the utilization of mechanochemistry can create new opportunities is materials chemistry, and, more interestingly, the synthesis of novel nanomaterials. Ball-milling procedures and ultrasonic techniques can be regarded as the most important mechanochemical synthetic tools, since they can act as attractive alternatives to the conventional methods. It is also feasible for the utilization of mechanochemical forces to act synergistically with the conventional synthesis (as a pre-treatment step, or simultaneously during the synthesis) in order to improve the synthetic process and/or the material's desired features. The usage of ultrasound irradiation or ball-milling treatment is found to play a crucial role in controlling and enhancing the structural, morphological, optical, and surface chemistry features that are important for heterogeneous photocatalytic practices. The focus of this article is to collect all the available examples in which the utilization of sonochemistry or ball milling had unique effects as a synthesis tool towards zero- or one-dimensional nanostructures of a semiconductor which is assumed as a benchmark in photocatalysis, titanium dioxide.


Assuntos
Nanopartículas/química , Titânio/química , Catálise , Processos Fotoquímicos
8.
Ultrason Sonochem ; 53: 120-125, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30686597

RESUMO

The use of high frequency ultrasound (800 kHz) highlights the non-radical character of the cis-cyclooctene epoxidation mediated by H2O2 and H2WO4. Combination of moderate mixing brought by the ultrasonic irradiation with precise thermoregulation of the double jacketed sonoreactor demonstrates the potential of this technique for studying and optimizing all the reaction parameters. The results not only reveal that the optimized ultrasonic conditions lead to excellent epoxidation outcomes with 96% yield and 98% selectivity but also to higher selectivities toward the epoxidation product compared with silent conditions.

9.
ChemSusChem ; 11(16): 2673-2676, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29938918

RESUMO

The irradiation of concentrated feeds of carbohydrates in alcoholic solution by high-frequency ultrasound (550 kHz) induces the formation of alkylpolyglycosides (APGs). This work is distinct from previous reports in that it does not involve any (bio)catalyst or activating agent, it takes place at only 40 °C, thus avoiding degradation of carbohydrates, and it selectively yields APGs with a degree of polymerization in a window of 2-7, an important limitation of the popular Fischer glycosylation. This ultrasound-based technology proved successful with a range of different valuable carbohydrates and alkyl alcohols. The elucidation of the structure of all the produced glycosides strongly suggests that 1,6-anhydrosugars formed in situ are key intermediate species.

10.
Ultrason Sonochem ; 40(Pt B): 117-122, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28341331

RESUMO

Based on the analyses of papers from the literature, and especially those published in Ultrasonics Sonochemistry journal, the contribution of sonochemistry to green chemistry area has been discussed here. Important reminders and insights on the good practices and considerations have been made to understand and demonstrate how sonochemistry can continue to efficiently contribute to green chemistry area in the further studies.

11.
Top Curr Chem (Cham) ; 375(2): 41, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28337669

RESUMO

Lignocellulosic biomass represents a natural renewable chemical feedstock that can be used to produce high value-added chemicals and platform molecules. Nowadays, there are extensive studies on a variety of aspects concerning the valorization of lignocellulosic biomass into desirable products. Among the current technologies for biomass conversion some require extreme conditions along with high temperatures and pressures. Therefore, major technological innovations based on more economical and environmental methodologies are currently developed both in academic laboratories and in industry. In this context, ultrasound-assisted catalysis constitutes an alternative method offering new strategies to upgrade biomass. The possibility of combining catalysis with sonication indeed provides avenues that are worth exploring for the valorization of lignocellulosic compounds into value-added chemical feedstocks. In this mini-review, the available sonochemical systems are first presented, with a focus on the most important ultrasonic parameters, which is intended to provide a mechanistic background. Next, this contribution aims to provide insight into the most recent developments along with prominent examples in the field of sonocatalysis applied to the chemical transformation of lignocellulosic biomass and its derivatives.


Assuntos
Celulose/química , Sonicação , Biomassa , Catálise
13.
Sci Rep ; 7: 40650, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084448

RESUMO

This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.


Assuntos
Glucose/química , Ácido Glucurônico/química , Oxirredução/efeitos da radiação , Ondas Ultrassônicas , Carboidratos/química , Catálise/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Soluções
14.
Ultrason Sonochem ; 36: 27-35, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28069210

RESUMO

The heterogeneous oxidation of vanillyl alcohol to vanillin was investigated on new grounds under eco-friendly conditions in the presence of hydrogen peroxide as an oxidant and water as solvent, coupled with low frequency ultrasonic irradiation. The sono-Fenton-like-assisted vanillyl alcohol oxidation was performed with a high-surface area nanostructured spinel cobalt oxide catalyst exhibiting small crystallites size. The catalytic reaction was also carried out under conventional heating conditions for comparison purposes. The influence of the reaction parameters, namely catalyst loading and hydrogen peroxide concentration was studied with the aim of determining the optimum yield and selectivity to the desired vanillin product. The chemical effects of ultrasound (ability to generate hydroxyl radicals) along with increased mass transfer appeared to be key prerequisites for enhancing the efficiency of the process, while decreasing the overall energy consumption.


Assuntos
Benzaldeídos/química , Álcoois Benzílicos/química , Cobalto/química , Óxidos/química , Ondas Ultrassônicas , Catálise , Radical Hidroxila/química , Oxirredução
15.
J Hazard Mater ; 324(Pt B): 773-780, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27899239

RESUMO

Based on our original knowledge and experience on both polychlorinated biphenyls (PCBs) identification in aquatic ecosystems, and use of ionic liquids (ILs) as solvents and/or co-catalysts in green chemistry, we drawn a dared comparison between these two families. Indeed, PCBs has been used during several decades for their new properties, but are now considered as prevalent and persistent pollutants; some toxic effects on environment or human are still revealed. ILs, often designated as "green solvents" are increasingly used in numerous applications, but few studies reported about their environmental impact are still controversial. Through a parallel between properties and applications of PCBs and ILs, we wondered if history could not repeat itself, and how to provide a better future for ILs. Here, we provide some interesting comparisons and we discuss which tracks it could be important to follow for ILs applications in order to avoid the errors done with PCBs.


Assuntos
Poluentes Ambientais/toxicidade , Química Verde/tendências , Líquidos Iônicos/toxicidade , Bifenilos Policlorados/toxicidade , Solventes/toxicidade , Poluentes Ambientais/química , Líquidos Iônicos/química , Bifenilos Policlorados/química , Solventes/química
16.
Top Curr Chem (Cham) ; 374(4): 51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27573403

RESUMO

Ionic liquids (ILs) as reaction media, and sonochemistry (US) as activation method, represent separately unconventional approaches to reaction chemistry that, in many cases, generate improvements in yield, rate and selectivity compared to traditional chemistry, or even induce a change in the mechanisms or expected products. Recently, these two technologies have been combined in a range of different applications, demonstrating very significant and occasionally surprising synergetic effects. In this book chapter, the advantages and limitations of the IL/US combination in different chemical applications are critically reviewed in order to understand how, and in which respects, it could become an essential tool of sustainable chemistry in the future. Fundamental aspects and practical considerations of the combination are discussed to better control and demonstrate the brought synergetic effects.

17.
Ultrason Sonochem ; 31: 598-609, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26964987

RESUMO

Structural and surface properties of different natural aluminosilicates (layered, chain and framework structural types) exposed of 20 kHz ultrasound irradiation (0-120 min) in aqueous and 35 wt%. aqueous H2O2 dispersions were studied by X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption-desorption, thermal analysis, and Fourier transform infrared spectroscopy (FTIR) techniques. It was confirmed that sonication caused slight changes in the structure of investigated minerals whereas their textural properties were significantly affected. The aqueous dispersions of montmorillonite (Mt), clinoptilolite (Zlt), glauconite (Glt) and palygorskite (Pal) were represented by several particles size fractions according to DLS-study. Ultrasound irradiation produced a decrease of the average particle diameter by 4-6 times in water and by 1.3-5 times in H2O2 dispersions except for Pal, which underwent strong agglomeration. A significant increase of total pore volume and pore diameter was observed for Glt sonicated in H2O2 dispersions whereas for Pal mainly micropore volume sharply increased in both aqueous and H2O2 dispersions.

18.
Chemphyschem ; 16(5): 993-1002, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652555

RESUMO

Liquid multi-ion systems made by combining two or more salts can exhibit charge ordering and interactions not found in the parent salts, leading to new sets of properties. This is investigated herein by examining a liquid comprised of a single cation, 1-ethyl-3-methylimidazolium ([C2mim](+)), and two anions with different properties, acetate ([OAc](-)) and bis(trifluoromethylsulfonyl)imide ([NTf2](-)). NMR and IR spectroscopy indicate that the electrostatic interactions are quite different from those in either [C2mim][OAc] or [C2mim][NTf2]. This is attributed to the ability of [OAc](-) to form complexes with the [C2mim](+) ions at greater than 1:1 stoichiometries by drawing [C2mim](+) ions away from the less basic [NTf2](-) ions. Solubility studies with molecular solvents (ethyl acetate, water) and pharmaceuticals (ibuprofen, diphenhydramine) show nonlinear trends as a function of ion content, which suggests that solubility can be tuned through changes in the ionic compositions.


Assuntos
Acetatos/química , Imidazóis/química , Imidas/química , Líquidos Iônicos/química , Halogenação , Íons/química , Simulação de Dinâmica Molecular , Solubilidade , Solventes/química , Eletricidade Estática , Água/química
19.
ChemSusChem ; 7(10): 2774-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146583

RESUMO

This Review focuses on the use of ultrasound to produce chemicals from lignocellulosic biomass. However, the question about the potential of sonochemistry for valorization/conversion of lignocellulosic biomass into added-value chemicals is rather conceptual. Until now, this technology has been mainly used for the production of low-value chemicals such as biodiesel or as simple method for pretreatment or extraction. According to preliminary studies reported in literature, access to added-value chemicals can be easily and sometimes solely obtained by the use of ultrasound. The design of sonochemical parameters offers many opportunities to develop new eco-friendly and efficient processes. The goal of this Review is to understand why the use of ultrasound is focused rather on pretreatment or extraction of lignocellulosic biomass rather than on the production of chemicals and to understand, through the reported examples, which directions need to be followed to favor strategies based on ultrasound-assisted production of chemicals from lignocellulosic biomass. We believe that ultrasound-assisted processes represent an innovative approach and will create a growing interest in academia but also in the industry in the near future. Based on the examples reported in the literature, we critically discuss how sonochemistry could offer new strategies and give rise to new results in lignocellulosic biomass valorization.


Assuntos
Biomassa , Celulose/química , Química Verde/métodos , Som
20.
Bioresour Technol ; 164: 394-401, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24874879

RESUMO

Treating ground bagasse or Southern yellow pine in the biodegradable ionic liquid (IL), choline acetate ([Cho][OAc]), at 100°C for 24h led to dissolution of hemicellulose and lignin, while leaving the cellulose pulp undissolved, with a 54.3% (bagasse) or 34.3% (pine) reduction in lignin content. The IL solution of the dissolved biopolymers can be separated from the undissolved particles either by addition of water (20 wt% of IL) followed by filtration or by centrifugation. Hemicellulose (19.0 wt% of original bagasse, 10.2 wt% of original pine, containing 14-18 wt% lignin) and lignin (5.0 wt% of original bagasse, 6.0 wt% of original pine) could be subsequently precipitated. The pulp obtained from [Cho][OAc] treatment can be rapidly dissolved in 1-ethyl-3-methylimidazolium acetate (e.g., 17 h for raw bagasse vs. 7h for pulp), and precipitated as cellulose-rich material (CRM) with a lower lignin content (e.g., 23.6% for raw bagasse vs. 10.6% for CRM).


Assuntos
Acetatos/farmacologia , Biomassa , Biotecnologia/métodos , Colina/farmacologia , Lignina/metabolismo , Papel , Biopolímeros/isolamento & purificação , Celulose/química , Líquidos Iônicos/farmacologia , Pinus/efeitos dos fármacos , Reciclagem , Solubilidade , Soluções , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA