RESUMO
Background and Aims: Loss of activity of the inflammatory bowel disease (IBD) susceptibility gene, protein tyrosine phosphatase non-receptor type 2 (PTPN2), is associated with altered microbiome composition in both human subjects and mice. Further, expansion of the bacterial pathobiont, adherent-invasive E. coli (AIEC), is strongly linked to IBD pathogenesis. The mechanism by which intestinal epithelial cells (IEC) maintain equilibrium between commensal microbiota and immune cells to restrict invading pathobionts is poorly understood. Here, we investigated the role of IEC-specific PTPN2 in regulating AIEC colonization. Methods: Tamoxifen-inducible, intestinal epithelial cell-specific Ptpn2 knockout mice (Ptpn2 ΔIEC) and control Ptpn2 fl/fl mice were infected with either non-invasive E. coli K12, or fluorescent-tagged mAIEC (mAIECred) for four consecutive days or administered PBS. Subsequently, bacterial colonization in mouse tissues was quantified. mRNA and protein expression were assayed in intestinal epithelial cells (IECs) or whole tissue lysates by PCR and Western blot. Tissue cytokine expression was determined by ELISA. Intestinal barrier function was determined by in vivo administration of 4 kDa FITC-dextran (FD4) or 70kDa Rhodamine-B dextran (RD70) fluorescent probes. Confocal microscopy was used to determine the localization of tight-junction proteins. Results: Ptpn2 ΔIEC mice exhibited increased mAIECred - but not K12 - bacterial load in the distal colon compared to infected Ptpn2 fl/fl mice. The higher susceptibility to mAIECred infection was associated with altered levels of antimicrobial peptide (AMPs). Ileal RNA expression of the alpha-defensin AMPs, Defa5 and Defa6, as well as MMP7, was significantly lower in Ptpn2 ΔIEC vs. Ptpn2 fl/fl mice, after mAIECred but not K12 infection. Further, we observed increased tight junction-regulated permeability determined by elevated in vivo FD4 but not RD70 permeability in Ptpn2 ΔIEC-K12 mice compared to their respective controls. This effect was further exacerbated in Ptpn2 ΔIEC mAIEC-infected mice. Further, Ptpn2 ΔIEC mice displayed lower IL-22, IL-6, IL-17A cytokine expression post mAIEC infection compared to Ptpn2 fl/fl controls. Recombinant IL-22 reversed the FD4 permeability defect and reduced bacterial burden in Ptpn2 ΔIEC mice post mAIEC challenge. Conclusion: Our findings highlight that intestinal epithelial PTPN2 is crucial for mucosal immunity and gut homeostasis by promoting anti-bacterial defense mechanisms involving coordinated epithelial-immune responses to restrict pathobiont colonization.
RESUMO
Background and Aims: A cohort of patients with inflammatory bowel disease (IBD) exhibit expansion of the gut pathobiont, adherent-invasive E. coli (AIEC). Loss of activity of the IBD susceptibility gene, protein tyrosine phosphatase type 2 (PTPN2), results in dysbiosis of the gut microbiota both in human subjects and mice. Further, constitutive Ptpn2 knock-out (Ptpn2-KO) mice display expansion of AIEC compared to wildtype littermates. CEACAM6, a host cell surface glycoprotein, is exploited by AIEC to attach to and enter intestinal epithelial cells (IECs). Here, we investigate the role of IEC-specific PTPN2 in restricting AIEC invasion. Methods: Biopsies from IBD patients heterozygous (CT) or homozygous (CC) for the PTPN2 SNP (single nucleotide polymorphism) rs1893217 were processed for immunohistochemistry. HT-29 intestinal epithelial cells (IEC) were transfected with control shRNA (PTPN2-CTL), or a shRNA targeted towards PTPN2 (PTPN2-KD). The rs1893217 SNP was inserted (PTPN2-KI), or a complete knock-out of PTPN2 (PTPN2-KO) was generated, with CRISPR-Cas9 gene editing of Caco-2BBe IEC lines. Adherence and invasion assays were performed with either the human IBD AIEC isolate, LF82, or a novel fluorescent-tagged mouse adherent-invasive E. coli (mAIECred) at multiplicity of infection (MOI) of 10. IL-6 and the pan-JAK inhibitor tofacitinib were administered to interrogate JAK-STAT signaling. Protein expression was determined by western blotting and densitometry. Results: CEACAM6 expression was elevated (colon and ileum) in IBD patients carrying the PTPN2 rs1893217 SNP (CT, CC) compared to wildtype (TT) IBD patients. HT-29 and Caco-2BBe cell lines deficient in PTPN2 expressed significantly higher levels of CEACAM6. Further, PTPN2-KI and PTPN2-KO cell lines also displayed greater adherence and invasion by AIEC LF82 and higher mAIECred invasion. CEACAM6 expression was further elevated after administration of IL-6 in PTPN2-deficient cell lines compared to untreated controls. Silencing of STAT1 and 3 partially reduced CEACAM6 protein expression. Tofacitinib significantly reduced the elevated CEACAM6 protein expression and the higher AIEC adherence and invasion in PTPN2-KI and PTPN2-KO cell lines compared to DMSO controls. Conclusion: Our findings highlight a crucial role for PTPN2 in restricting pathobiont entry into host cells. Our study also describes a role for the FDA-approved drug, tofacitinib (Xeljanz) in correcting the JAK-STAT-mediated over-expression of CEACAM6, used by pathobionts as an entry portal into host cells. These findings suggest a role for JAK-inhibitors in mitigating AIEC colonization in IBD-susceptible hosts.
RESUMO
Production of medium chain fatty acids (MCFAs) from CO2 through microbial electrosynthesis (MES) holds great potential. The present study investigated the effect of cathode voltages of - 0.8 V (MES-1), -1.0 V (MES-2) and -1.2 V vs Ag/AgCl (MES-3), on the production of MCFAs from CO2 and ethanol using an enriched culture. Direct current (DC) power supply was used to maintain constant cathode voltages. The highest amounts of caproic acid were produced in MES-2 at an average concentration of 1.51 ± 0.14 g/L with a maximum selectivity of 68 ± 7 %. Microbial diversity analysis showed abundance of the Clostridiaceae family that allowed chain elongation in all MES reactors. This study shows that potentiostatic control approach for MCFA synthesis, can be replaced by DC power supply in future MES setups. Using selective culture enrichment, MES efficiently produces MCFAs from CO2 and ethanol, with -1.0 V yielding the highest caproic acid.
Assuntos
Fontes de Energia Bioelétrica , Caproatos , Dióxido de Carbono , Etanol , Dióxido de Carbono/metabolismo , Etanol/metabolismo , Eletricidade , EletrodosRESUMO
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
RESUMO
This study investigates real-world carbon dioxides (CO2) and nitrogen oxides (NOx) emissions from diesel (Bharat Stage-IV (BS-IV)) and petrol/gasoline (BS-IV and BS-VI) cars in Indian driving conditions using a portable emission measurement system (PEMS). The paired sample t-test revealed a significant difference ( p < 0.05) in NOx and CO2 emissions among the three types of cars, except for CO2 emissions ( p > 0.05) between BS-IV petrol and BS-VI petrol cars. The highest NOx emission rates were observed in all car types during acceleration (> 1 m/s2) and deceleration (- 2 m/s2). CO2 emission rates were also high during acceleration (> 1 m/s2) for all car types. At low speeds (around 20 kmph), all car types had low emissions of CO2 and NOx, with acceleration and deceleration rates ranging from - 0.5 to 0.5 m/s2. BS-IV diesel cars emit significantly higher NOx emissions compared to petrol cars, especially at vehicle-specific power (VSP) bin 0 (deceleration to idling mode) and during VSP bin 7 (acceleration mode). BS-IV diesel cars emit 228% and 530% higher NOx emissions than BS-IV and BS-VI petrol cars at VSP bins 0 and 7, respectively. CO2 emissions from BS-VI petrol cars were 10% lower than those from BS-IV petrol cars across all VSP bins, indicating moderate reductions. Furthermore, diesel cars emit 140% less CO2 emissions than petrol cars across various VSP bins. The findings highlight the need for cleaner technologies and responsible driving practices to address vehicular emission concerns.
Assuntos
Poluentes Atmosféricos , Automóveis , Dióxido de Carbono , Monitoramento Ambiental , Gasolina , Óxidos de Nitrogênio , Emissões de Veículos , Emissões de Veículos/análise , Índia , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Dióxido de Carbono/análise , Automóveis/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricosRESUMO
Globally, nutrient pollution is a serious and challenging concern. Wastewater treatment plants (WWTPs) are designed to prevent the discharge of contaminants resulting from anthropogenic sources to the receiving water bodies. In this study, seasonal nutrient pollution load, and biological nutrient removal efficiency of an anoxic aerobic unit based WWTP were investigated. Seasonal assessment revealed that the average total nitrogen removal efficiency and total phosphorus removal efficiency of the WWTP do not meet the discharge standard of 10 mg/L and 1 mg/L, respectively. Furthermore, the WWTP does not utilize the energy contained in the wastewater. In this regard, dual chamber MFC (D-MFC) has emerged as a promising solution that can not only treat wastewater but can also convert chemical energy present in the wastewater into electrical energy. However, higher N O3- (57 ± 4 mg/L) and P-P O43- (6 ± 0.52 mg/L) concentration in cathodic effluent is a major drawback in D-MFC. Therefore, to solve this issue, D-MFC was transformed into a microbial nutrient recovery cell (MNRC) which demonstrated a final N H4+-N and P-P O43- concentration of nearly 1 mg/L with N H4+-N and P-P O43- recovery up to 74 % and 69 %, respectively in the recovery chamber. Besides, MNRC attained a maximum power density of 307 mW/m3 and a current density of 1614 mA/m3, thus indicating MNRC is an eco-friendly, energy-neutral, and promising technology for electricity generation and recovering nutrients.
Assuntos
Nitrogênio , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/químicaRESUMO
Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.
Assuntos
Poeira , Endotoxemia , Camundongos , Animais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , InflamaçãoRESUMO
The spatiotemporal control over the drug's action offered by ruthenium(II) polypyridyl complexes by the selective activation of the prodrug inside the tumor has beaconed toward much-desired selectivity issues in cancer chemotherapy. The photocaging of anticancer bioactive ligands attached synergistically with cytotoxic Ru(II) polypyridyl cores and selective release thereof in cancer cells are a promising modality for more effective drug action. Diallyl sulfide (DAS) naturally found in garlic has anticancer, antioxidant, and anti-inflammatory activities. Herein, we designed two Ru(II) polypyridyl complexes to cage DAS having a thioether-based donor site. For in-depth photocaging studies, we compared the reactivity of the DAS-caged compounds with the uncaged Ru(II)-complexes with the general formula [Ru(ttp)(NN)(L)]+/2+. Here, in the first series, ttp = p-tolyl terpyridine, NN = phen (1,10-phenanthroline), and L = Cl- (1-Cl) and H2O (1-H2O), while for the second series, NN = dpq (pyrazino[2,3-f][1,10]phenanthroline), and L = Cl- (2-Cl) and H2O (2-H2O). The reaction of DAS with 1-H2O and 2-H2O yielded the caged complexes [Ru(ttp)(NN)(DAS)](PF6)2, i.e., 1-DAS and 2-DAS, respectively. The complexes were structurally characterized by X-ray crystallography, and the solution-state characterization was done by 1H NMR and ESI-MS studies. Photoinduced release of DAS from the Ru(II) core was monitored by 1H NMR and UV-vis spectroscopy. When irradiated with a 470 nm blue LED in DMSO, the photosubstitution quantum yields (Φ) of 0.035 and 0.057 were observed for 1-DAS and 2-DAS, respectively. Intriguing solution-state speciation and kinetic behaviors of the uncaged and caged Ru(II)-complexes emerged from 1H NMR studies in the dark, and they are depicted in this work. The caged 1-DAS and 2-DAS complexes remained mostly structurally intact for a reasonably long period in DMSO. The uncaged 1-Cl and 2-Cl complexes, although did not undergo substitution in only DMSO but in the 10% DMSO/H2O mixture, completely converted to the corresponding DMSO-adduct within 16 h. Toward gaining insights into the reactivity with the biological targets, we observed that 1-Cl upon hydrolysis formed an adduct with 5'-GMP, while a small amount of GSSG-adduct was observed when 1-Cl was reacted with GSH in H2O at 323 K. 1-Cl after hydrolysis reacted with l-methionine, although the rate was slightly slower compared with that with DMSO, suggesting varying reaction kinetics with different sulfur-based linkages. Although 1-H2O reacted with sulfoxide and thioether ligands at room temperature, the rate was much faster at higher temperatures obviously, and thiol-based systems needed higher thermal energy for conjugation. Overall, these studies provide insight for thoughtful design of new generation Ru(II) polypyridyl complexes for caging suitable bioactive organic molecules.
Assuntos
Rutênio , Antioxidantes , Dimetil Sulfóxido , Compostos Fitoquímicos , Rutênio/farmacologia , Sulfetos/farmacologiaRESUMO
A 30 portable emission measurement system (PEMS) test was conducted in this study to examine the effect of driving modes (aggressive and normal) and road type (urban and rural) on tailpipe emissions. Driving modes were assessed using relative positive acceleration and velocity × positive acceleration factors. The findings revealed that aggressive and normal driving modes differed significantly on urban and rural roads, as evident from paired sample t-test (p < 0.05). Furthermore, aggressive driving exhibited more prominent speed and acceleration on rural roads, while normal driving modes showed consistent acceleration or speed patterns regardless of road conditions as observed from kernel density estimation and box plot analysis. Emission rates (CO, CO2, HC, and NOx) significantly varied between aggressive and normal driving modes on urban and rural roads, as indicated by paired sample t-test analysis (p < 0.05). Aggressive driving increased CO2, CO, and HC emission rates for acceleration and deceleration modes by 18% to 40% compared to normal driving. Aggressive driving modes increased the emission factors (CO, HC, and CO2) by 5% to 25% compared to the normal driving mode on both urban and rural roads. Moreover, the NOx emission factors were also found significant during normal driving conditions on urban roads. This study provides real-world emission factors of diesel cars considering the impact of route, vehicle familiarity, and driving behavior induced by varying traffic conditions, which will contribute to improve the current emissions inventory on both a local and global level.
Assuntos
Automóveis , Dióxido de Carbono , Monitoramento Ambiental , Aceleração , Análise EspacialRESUMO
Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.
Assuntos
Fósforo , Águas Residuárias , Fósforo/análise , Nitrogênio/análise , Nutrientes/análise , Eliminação de Resíduos Líquidos/métodosRESUMO
BACKGROUND: Minority social status determined by religion, caste and tribal group affiliations, are usually treated as independent dimensions of inequities in India. This masks relative privileges and disadvantages at the intersections of religion-caste and religion-tribal group affiliations, and their associations with population health disparities. METHODS: Our analysis was motivated by applications of the intersectionality framework in public health, which underlines how different systems of social stratification mutually inform relative access to material resources and social privilege, that are associated with distributions of population health. Based on this framework and using nationally representative National Family Health Surveys of 1992-93, 1998-99, 2005-06, 2015-16 and 2019-21, we estimated joint disparities by religion-caste and religion-tribe, for prevalence of stunting, underweight and wasting in children between 0-5 years of age. As indicators of long- and short-term growth interruptions, these are key population health indicators capturing developmental potential of children. Our sample included Hindu and Muslim children of < = 5 years, who belonged to Other (forward) castes (the most privileged social group), Other Backward Classes (OBCs), Schedule Castes (SCs) and Schedule Tribe (STs). Hindu-Other (forward) caste, as the strata with the dual advantages of religion and social group was specified as the reference category. We specified Log Poisson models to estimate multiplicative interactions of religion- caste and religion-tribe identities on risk ratio scales. We specified variables that may be associated with caste, tribe, or religion, as dimensions of social hierarchy, and/or with child growth as covariates, including fixed effects for states, survey years, child's age, sex, household urbanicity, wealth, maternal education, mother's height, and weight. We assessed patterns in growth outcomes by intersectional religion-caste and religion-tribe subgroups nationally, assessed their trends over the last 30 years, and across states. FINDINGS: The sample comprised 6,594, 4,824, 8,595, 40,950 and 3,352 Muslim children, and 37,231, 24,551, 35,499, 1,87,573 and 171,055 Hindu children over NFHS 1, 2, 3, 4, and 5, respectively. As one example anthropometric outcome, predicted prevalence of stunting among different subgroups were as follows- Hindu Other: 34.7% (95%CI: 33.8, 35.7), Muslim Other: 39.2% (95% CI: 38, 40.5), Hindu OBC: 38.2 (95%CI: 37.1, 39.3), Muslim OBC: 39.6% (95%CI: 38.3, 41), Hindu SCs: 39.5% (95%CI: 38.2, 40.8), Muslims identifying as SCs: 38.5% (95%CI: 35.1, 42.3), Hindu STs: 40.6% (95% CI: 39.4, 41.9), Muslim STs: 39.7% (95%CI: 37.2, 42.4). Over the last three decades, Muslims always had higher prevalence of stunting than Hindus across caste groups. But this difference doubled for the most advantaged castes (Others) and reduced for OBCs (less privileged caste group). For SCs, who are the most disadvantaged caste group, the Muslim disadvantage reversed to an advantage. Among tribes (STs), Muslims always had an advantage, which reduced over time. Similar directions and effect sizes were estimated for prevalence of underweight. For prevalence of wasting, effect sizes were in the same range, but not statistically significant for two minority castes-OBCs and SCs. INTERPRETATION: Hindu children had the highest advantages over Muslim children when they belonged to the most privileged castes. Muslim forward caste children were also disadvantaged compared to Hindu children from deprived castes (Hindu OBCs and Hindu SCs), in the case of stunting. Thus, disadvantages from a socially underprivileged religious identity, seemed to override relative social advantages of forward caste identity for Muslim children. Disadvantages born of caste identity seemed to take precedence over the social advantages of Hindu religious identity, for Hindu children of deprived castes and tribes. The doubly marginalized Muslim children from deprived castes were always behind their Hindu counter parts, although their differentials were less than that of Muslim-Hindu children of forward castes. For tribal children, Muslim identity seemed to play a protective role. Our findings indicate monitoring child development outcomes by subgroups capturing intersectional social experiences of relative privilege and access from intersecting religion and social group identities, could inform policies to target health disparities.
Assuntos
Islamismo , Identificação Social , Criança , Humanos , Hierarquia Social , Magreza , Classe Social , Índia/epidemiologia , Transtornos do Crescimento/epidemiologiaRESUMO
BACKGROUND: Protracted, internal conflicts with geographic variations within countries, are an important understudied community exposure for adverse child health outcomes. METHODS: Violent events from the Uppsala Conflict Data Program (UCDP) between January 2016-December 2020 and January 2010-December 2015, were included as exposure events for children sampled in National Family Health Surveys (NFHS) 5 (2019-21) and NFHS 4 (2015-16), respectively. Geocoded data from UCDP were merged with residential clusters from NFHS, to identify children living in villages or urban blocks situated at <= 50 km from conflict sites. Within these clusters, which we defined as conflict exposed, we studied risks of stunting, underweight and wasting in children, prenatally, and in 0-3 years. We assessed sensitivity on a subsample of siblings with discordant conflict exposures. RESULTS: For NFHS 5, exposure to violence between 0 and 3 years was associated with 1.16 times (95% CI 1.11-1.20) higher risks of stunting, 1.08 (1.04, 1.12) times higher risks of underweight, and no change in wasting. In-utero violence exposure was associated with 1.11 times (95% CI 1.04-1.17) higher risks of stunting, 1.08 (95% CI 1.02-1.14) times higher risks of underweight, and no change in wasting, among children <= 2 years. In 17,760 siblings of 8333 mothers, exposure to violence during 0-3 years, was associated with a 1.19 times higher risk of stunting (95% CI - 0.24 to 0.084). Incremental quartiles of violence exposure had higher risks of stunting and underweight until quartile 3. CONCLUSION: In-utero and early childhood indirect exposure to protracted conflicts were associated with increased stunting and underweight in India. Given the continued exposures of such historically and contextually rooted internal conflicts in many LMICs, chronic violence exposures should be targeted in public health policies as important social and political determinant of child health.
RESUMO
BACKGROUND & AIMS: Loss-of-function variants in the PTPN2 gene are associated with increased risk of inflammatory bowel disease. We recently showed that Ptpn2 is critical for intestinal epithelial cell (IEC) barrier maintenance, IEC-macrophage communication, and modulation of the gut microbiome in mice, restricting expansion of a small intestinal pathobiont associated with inflammatory bowel disease. Here, we aimed to identify how Ptpn2 loss affects ileal IEC subtypes and their function in vivo. METHODS: Constitutive Ptpn2 wild-type, heterozygous, and knockout (KO) mice, as well as mice with inducible deletion of Ptpn2 in IECs, were used in the study. Investigation was performed using imaging techniques, flow cytometry, enteroid culture, and analysis of gene and protein levels of IEC markers. RESULTS: Partial transcriptome analysis showed that expression of Paneth cell-associated antimicrobial peptides Lyz1, Pla2g2a, and Defa6 was down-regulated markedly in Ptpn2-KO mice compared with wild-type and heterozygous. In parallel, Paneth cell numbers were reduced, their endoplasmic reticulum architecture was disrupted, and the endoplasmic reticulum stress protein, C/EBP-homologous protein (CHOP), was increased in Ptpn2-KO mice. Despite reduced Paneth cell number, flow cytometry showed increased expression of the Paneth cell-stimulatory cytokines interleukin 22 and interferon γ+ in CD4+ T cells isolated from Ptpn2-KO ileum. Key findings in constitutive Ptpn2-KO mice were confirmed in epithelium-specific Ptpn2ΔIEC mice, which also showed impaired lysozyme protein levels in Paneth cells compared with Ptpn2fl/fl control mice. CONCLUSIONS: Constitutive Ptpn2 deficiency affects Paneth cell viability and compromises Paneth cell-specific antimicrobial peptide production. The observed effects may contribute to the increased susceptibility to intestinal infection and dysbiosis in these mice.
Assuntos
Doenças Inflamatórias Intestinais , Celulas de Paneth , Camundongos , Animais , Celulas de Paneth/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Sobrevivência Celular , Doenças Inflamatórias Intestinais/genética , Íleo/metabolismo , Camundongos KnockoutRESUMO
Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage-epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22-driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.
Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Células Epiteliais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismoRESUMO
The true potential of the microalgae-based wastewater treatment (MWT) process is determined based on whether the process will provide a positive energy output and whether it is economically viable. The objectives of this study are dynamic modelling of microalgae growth based on initial wastewater concentration, temperature, solar radiation and a techno-economic assessment for an MWT scheme for application in a hot, dry climate. Through reference to relevant literature data on MWT in the Indian subcontinent, a selection of appropriate microalgal species Chlorella and Scenedesmus was made. The dynamic model developed was successfully calibrated and validated using independent experimental data collected from the published literature. Cost of production of bio-crude from microalgae grown in a hybrid photobioreactor and pond system in kitchen wastewater of Indian Institute of Technology, Hyderabad was calculated. A break-even selling price (BESP) of US$0.549/kg was obtained for the microalgae biomass. The cost of production of 1 L bio-crude was US$0.96 (Rs 69-74), which is comparable with crude oil cost. The model developed can be used by practising engineers to predict biomass growth and nutrient removal, thereby achieving a break-even point for cost efficiency.
Assuntos
Chlorella , Microalgas , Petróleo , Biocombustíveis , Biomassa , Nutrientes , Águas Residuárias/análiseRESUMO
â¢HMIS covers a large proportion of births, but a smaller fraction of child deaths compared to estimates from surveys.â¢Birth and death coverage in HMIS, while incomplete, has been improving nationally and for many states.â¢States that have improved HMIS reporting, should be studied for replicating best practices.â¢HMIS can provide signals for real time policy decisions, if used with due consideration of its limitations.â¢Including patient socioeconomic and demographic traits in HMIS, could further bolster its utility in population health.
RESUMO
The use of pyrolysis process to valorize digestate from anaerobic digestion (AD) of municipal sewage sludge for biochar production was piloted in a central biogas plant. The pyrolysis also generates pyrolysis liquid with high organics and nutrient contents that currently has no value and requires treatment, which could potentially be done in AD. As the pyrolysis liquid may contain inhibitory compounds, we investigated the effects of adding the pyrolysis liquid on AD of sewage sludge and thermal hydrolysis pretreated sewage sludge (THSS) simulating the full-scale centralized biogas plant conditions. In batch assays, the pyrolysis liquid as such did not produce any methane, and the 1% and 5% (v/w) shares suppressed the methane production from THSS by 14-19%, while a smaller decrease in methane production was observed with sewage sludge. However, in the semi-continuous reactor experiments, pyrolysis liquid at a 1% (v/w) share was added in sewage sludge or THSS feed without affecting the methane yields or digestate characteristics. The laboratory results indicated that pyrolysis liquid can be treated in AD, while extrapolating the results to the centralized biogas plant indicated minor increase in the overall methane production and an increased potential for ammonium recovery.
Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Hidrólise , Metano , PiróliseRESUMO
Macrophages are a heterogeneous population of innate immune cells that are often divided into two major subsets: classically activated, typically pro-inflammatory (M1) macrophages that mediate host defense, and alternatively activated, tolerance-inducing (M2) macrophages that exert homeostatic and tissue-regenerative functions. Disturbed macrophage function/differentiation results either in inadequate, excessive immune activation or in a failure to induce efficient protective immune responses against pathogens. Loss-of-function variants in protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with chronic inflammatory disorders, but the effect of macrophage-intrinsic PTPN2 loss is still poorly understood. Here we report that PTPN2-deficient macrophages fail to acquire an alternatively activated/M2 phenotype. This was the consequence of reduced IL-6 receptor expression and a failure to induce IL-4 receptor in response to IL-6, resulting in an inability to respond to the key M2-inducing cytokine IL-4. Ultimately, failure to adequately respond to IL-6 and IL-4 resulted in increased levels of M1 macrophage marker expression in vitro and exacerbated lung inflammation upon infection with Nippostrongylus brasiliensis in vivo. These results demonstrate that PTPN2 loss interferes with the ability of macrophages to adequately respond to inflammatory stimuli and might explain the increased susceptibility of PTPN2 loss-of-function carriers to developing inflammatory diseases.
Assuntos
Inflamação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Nippostrongylus/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Infecções por Strongylida/imunologia , Animais , Diferenciação Celular , Técnicas de Silenciamento de Genes , Humanos , Interleucina-4/metabolismo , Pulmão/parasitologia , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Células THP-1 , Células Th1/imunologia , Células Th2/imunologiaRESUMO
OBJECTIVES: Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN: IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS: Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS: Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.
Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genéticaRESUMO
OBJECTIVE: Women experiencing homelessness are at increased risk of cervical cancer and have disproportionately low Pap screening behaviors compared to the general population. Prevalence of Pap refusals and multiple kinds of trauma, specifically sexual trauma, are high among homeless women. This qualitative study explored how trauma affects Pap screening experiences, behaviors, and provider practices in the context of homelessness. METHODS: We conducted 29 in-depth interviews with patients and providers from multiple sites of a Federally Qualified Health Center as part of a study on barriers and facilitators to cervical cancer screening among urban women experiencing homelessness. The Health Belief Model and trauma-informed frameworks guided the analysis. RESULTS: Trauma histories were common among the 18 patients we interviewed. Many women also had strong physical and psychological reactions to screening, which influenced current behaviors and future intentions. Although most women had screened at least once in their lifetime, many patients experienced anticipated anxiety and retraumatization which pushed them to delay or refuse Paps. We recruited 11 providers who identified strategies they used to encourage screening, including emphasizing safety and shared decision-making before and during the exam, building strong patient-provider trust and communication, and individually tailoring education and counseling to patients' needs. We outlined suggestions and implications from these findings as trauma-informed cervical cancer screening. CONCLUSION: Discomfort with Pap screening was common among women experiencing homelessness, especially those with histories of sexual trauma. Applying a trauma-informed approach to cervical cancer screening may help address complex barriers among women experiencing homelessness, with histories of sexual trauma, or others who avoid, delay, or refuse the exam.