Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(31): 35299-35308, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895859

RESUMO

Loop-mediated isothermal amplification (LAMP) has received considerable attention for decentralized (point-of-care and on-site) nucleic acid testing in view of its simple temperature control (60-65 °C) and short assay time (15-60 min). There remains a challenge in its wide adoption and acceptance due to the limitations of the existing amplification result reporter probes, e.g., photobleaching of organic fluorophore and reduced sensitivity of the pH-sensitive colorimetric dye. Herein, we demonstrate CdSeS/ZnS quantum dots (semiconductor fluorescent nanocrystals with superior photostability than organic fluorophore) with surface modification of cysteamine (amine-QDs) as a new reporter probe for LAMP that enabled single-copy sensitivity (limit of detection of 83 zM; 20 µL reaction volume). For a negative LAMP sample (absence of target sequence), positively charged amine-QDs remained dispersed due to interparticle electrostatic repulsion. While for a positive LAMP sample (presence of target sequence), amine-QDs became precipitated. The characterization data showed that amine-QDs were embedded in magnesium pyrophosphate crystals (generated during positive LAMP), thus leading to their coprecipitation. This amine-QD-based one-step LAMP assay advances the field of QD-based nucleic acid amplification assays in two aspects: (1) compatibility─one-step amplification and detection (versus separation of amplification and detection steps); and (2) universality─the same amine-QDs for different target sequences (versus different oligonucleotide-modified QDs for different target sequences).


Assuntos
Ácidos Nucleicos , Pontos Quânticos , Aminas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
2.
Int J Pharm ; 598: 120224, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486028

RESUMO

Ibuprofen (IBP), a common non-steroidal anti-inflammatory drug (NSAID) with a log P of 3.51, has been shown to possess potential benefit in the treatment of Alzheimer's disease. However, the bioavailability of IBP to the brain is poor, which can be linked to its extensive binding to plasma proteins in the blood. This study aimed to evaluate the nanoparticle production of IBP by flash nanoprecipitation (FNP) technology, and to determine whether the nanoparticles prepared by FNP could enhance the delivery of IBP into the brain. Polymeric IBP nanoparticles were prepared with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) diblock copolymer as stabilizer under optimized conditions using a four-stream multi-inlet vortex mixer (MIVM). The optimized nanoparticles displayed a mean particle size of around 50 nm, polydispersity index of around 0.2, drug loading of up to 30% and physical stability of up to 34 days. In-depth surface characterization using zeta potential measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) showed that the surfaces of these nanoparticles were covered with the hydrophilic PEG groups from the diblock copolymer. In vivo brain uptake study of the IBP nanoparticles indicated that the particles, when coated with polysorbate 80, displayed an enhanced brain uptake. However, the extent of brain uptake enhancement appeared limited, possibly due to a rapid release of IBP from the nanoparticles into the blood stream following intravenous administration.


Assuntos
Ibuprofeno , Nanopartículas , Encéfalo , Tamanho da Partícula , Polietilenoglicóis , Polímeros
3.
ACS Appl Mater Interfaces ; 9(12): 10472-10480, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28276674

RESUMO

Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.


Assuntos
Difosfatos/química , Compostos de Magnésio/química , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Polietilenoglicóis
4.
J Mater Chem B ; 4(23): 4076-4083, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264609

RESUMO

In this work, we developed a simple and sensitive colorimetric detection platform for specific DNA sequences by using peroxidase mimetics of platinum nanoparticles supported on reduced graphene oxide. This nanocomposite possessed the combined advantages of platinum nanoparticles (superior peroxidase-like activity) and reduced graphene oxide (π-stacking interaction with single-stranded but not double-stranded DNA). The catalytic activity was strongly dependent on the chloroplatinic acid-to-graphene oxide mass ratio during the synthesis step, with an optimum ratio of 7 : 1. Unlike natural peroxidase, the nanocomposite had excellent stability over wide ranges of temperature (4-90 °C) and pH (1-13). For DNA detection, the nanocomposite had higher affinity for the single-stranded probe (in the absence of target) than the probe-target duplex. The probe-bound nanocomposite was stabilized against salt-induced aggregation and thus upon the addition of 3,3',5,5'-tetramethylbenzidine and hydrogen peroxide to the supernatant, an intense blue color was generated. The linear range and limit of detection of this assay platform were 0.5-10 nM and 0.4 nM, respectively. Moreover, this platform featured high specificity that 3-base-mismatched sequence could be distinguished with the naked eye and 1-base-mismatched sequence with absorbance measurement. Furthermore, the applicability for real sample detection was demonstrated by polymerase chain reaction product analysis. Taken together, this new platform is well suited for point-of-care and on-site nucleic acid testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA