Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 82(7): 1285-1295, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079709

RESUMO

Microbial fuel cells were developed using two different water sources: (1) unpolluted water (Kala Talao Lake) and (2) polluted water (Waldhuni River). The maximum output voltage provided by each source was compared, as was the cell voltage variation with anode porosity. The variation in power density of each cell with variation in anode porosity was also studied. The analysis of the MFCs' internal resistance (Rin) was also conducted and the variation with increased anode porosity was identified. The pH variation in both the MFCs is also reported. The cells' higher voltage output resulting in a lower pH was confirmed and variation of the pH gradient with increased porosity of anode was recorded. An analysis of the chemical oxygen demand (COD) values and water conductivity of the MFCs was also carried out. A significant drop in the COD values with increasing anode porosity occurred in both cells. The finding of increased porosity was also studied with decreased conductivity. In addition, variations in chloride content and total dissolved salts with porosity were performed.


Assuntos
Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Eletrodos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA