Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Aquat Toxicol ; 271: 106935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723468

RESUMO

Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.


Assuntos
Anfípodes , Pravastatina , Reprodução , Poluentes Químicos da Água , Animais , Pravastatina/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Anfípodes/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Oócitos/efeitos dos fármacos , Vitamina E
2.
J Environ Manage ; 358: 120784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603847

RESUMO

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Assuntos
Biomarcadores , Monitoramento Ambiental , Espécies Sentinelas , Monitoramento Ambiental/métodos , Biomarcadores/análise , França , Animais , Peixes
3.
Anal Chim Acta ; 1304: 342533, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637034

RESUMO

BACKGROUND: DIA (Data-Independent Acquisition) is a powerful technique in Liquid Chromatography coupled with high-resolution tandem Mass Spectrometry (LC-MS/MS) initially developed for proteomics studies and recently emerging in metabolomics and lipidomics. It provides a comprehensive and unbiased coverage of molecules with improved reproducibility and quantitative accuracy compared to Data-Dependent Acquisition (DDA). Combined with the Zeno trap and Electron-Activated Dissociation (EAD), DIA enhances data quality and structural elucidation compared to conventional fragmentation under CID. These tools were applied to study the lipidome and metabolome of the freshwater amphipod Gammarus fossarum, successfully discriminating stages and highlighting significant biological features. Despite being underused, DIA, along with the Zeno trap and EAD, holds great potential for advancing research in the omics field. RESULTS: DIA combined with the Zeno trap enhances detection reproducibility compared to conventional DDA, improving fragmentation spectra quality and putative identifications. LC coupled with Zeno-SWATH-DIA methods were used to characterize molecular changes in reproductive cycle of female gammarids. Multivariate data analysis including Principal Component Analysis and Partial Least Square Discriminant Analysis successfully identified significant features. EAD fragmentation helped to identify unknown features and to confirm their molecular structure using fragmentation spectra database annotation or machine learning. EAD database matching accurately annotated five glycerophospholipids, including the position of double bonds on fatty acid chain moieties. SIRIUS database predicted structures of unknown features based on experimental fragmentation spectra to compensate for database incompleteness. SIGNIFICANCE: Reproducible detection of features and confident identification of putative compounds are pivotal stages within analytical pipelines. The DIA approach combined with Zeno pulsing enhances detection sensitivity and targeted fragmentation with EAD in positive polarity provides orthogonal fragmentation information. In our study, Zeno-DIA and EAD thereby facilitated a comprehensive and insightful exploration of pertinent biological molecules associated with the reproductive cycle of gammarids. The developed methodology holds great promises for identifying informative biomarkers on the health status of an environmental sentinel species.


Assuntos
Anfípodes , Lipidômica , Animais , Feminino , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Elétrons , Muda , Reprodutibilidade dos Testes , Metaboloma , Aprendizado de Máquina
4.
Artigo em Inglês | MEDLINE | ID: mdl-38459285

RESUMO

The application of plant protection products (PPPs) may have delayed and long-term non-intentional impacts on aquatic invertebrates inhabiting agricultural landscapes. Such effects may induce population responses based on developmental and transgenerational plasticity, selection of genetic resistance, as well as increased extirpation risks associated with random genetic drift. While the current knowledge on such effects of PPPs is still scarce in non-target aquatic invertebrate species, evidences are accumulating that support the need for consideration of evolutionary components of the population response to PPPs in standard procedures of risk assessment. This mini-review, as part of a contribution to the collective scientific assessment on PPP impacts on biodiversity and ecosystem services performed in the period 2020-2022, presents a brief survey of the current results published on the subject, mainly in freshwater crustaceans, and proposes some research avenues and strategies that we feel relevant to fill this gap.

5.
Anal Bioanal Chem ; 416(12): 2893-2911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492024

RESUMO

The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.


Assuntos
Anfípodes , Lipídeos , Metabolômica , Animais , Anfípodes/metabolismo , Anfípodes/química , Lipídeos/química , Lipídeos/análise , Metabolômica/métodos , Lipidômica/métodos , Espectrometria de Massas/métodos , Espécies Sentinelas/metabolismo , Elétrons
6.
Artigo em Inglês | MEDLINE | ID: mdl-38324154

RESUMO

Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38036909

RESUMO

Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.

8.
Sci Data ; 10(1): 643, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735452

RESUMO

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Assuntos
Invertebrados , Proteogenômica , Animais , Sequência de Aminoácidos , Proteômica , Espécies Sentinelas
9.
Sci Total Environ ; 903: 166216, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567286

RESUMO

Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.

10.
Sci Total Environ ; 893: 164875, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329916

RESUMO

Mass spectrometry in multiple reaction monitoring (MRM) mode is a powerful technique that can provide highly selective, multiplexed, and reproducible quantification of peptides derived from proteins. Ideal for the application of molecular biomarkers in biomonitoring surveys, MRM tools have been recently developed to quantify sets of pre-selected biomarkers in freshwater sentinel species. Still limited to the validation and application phase of biomarkers, dynamic MRM (dMRM) acquisition mode has increased the multiplexing capacity of mass spectrometers, expanding opportunities to explore proteome modulations in sentinel species. This study evaluated the feasibility to propose dMRM tools for investigating sentinel species proteomes at the organ level and demonstrated its potential for screening contaminant effects and discovering new protein biomarkers. As a proof of concept, a dMRM assay was developed to comprehensively capture the functional proteome of the caeca of Gammarus fossarum, a freshwater crustacean, commonly used as a sentinel species in environmental biomonitoring. The assay was then used to assess the effects of sub-lethal concentrations of cadmium, silver, and zinc on gammarid caeca. Results showed dose-response and specific metal effects on caecal proteomes, with a slight effect of zinc compared to the two non-essential metals. Functional analyses indicated that cadmium affected proteins involved in carbohydrate metabolism, digestive and immune processes, while silver affected proteins related to oxidative stress response, chaperonin complexes and fatty acid metabolism. Based on these metal-specific signatures, several proteins modulated in a dose-dependent manner were proposed as candidate biomarkers for tracking the level of these metals in freshwater ecosystems. Overall, this study highlights the potential of dMRM to decipher the specific modulations of proteome expression induced by contaminant exposure and pinpoints specific response signatures, offering new perspectives for the de novo identification and development of biomarkers in sentinel species.


Assuntos
Anfípodes , Gastrópodes , Animais , Anfípodes/fisiologia , Biomarcadores/metabolismo , Cádmio/toxicidade , Ecossistema , Gastrópodes/metabolismo , Proteoma , Espécies Sentinelas/metabolismo , Prata/toxicidade , Zinco/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-37099095

RESUMO

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

12.
Sci Total Environ ; 859(Pt 1): 160179, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395849

RESUMO

In situ bioassays are used to measure the harmful effects induced by mixtures of toxic chemicals in watercourses. In France, national-scale biomonitoring data are available including invertebrate surveys and in-field chemical toxicity measures with caged gammarids to assess environmental toxicity of mixtures of chemicals. The main objective of our study is to present a proof-of-concept approach identifying possible links between in-field chemical toxicity, stressors and the ecological status. We used two active biomonitoring databases comprising lethal toxicity (222 in situ measures of gammarid mortality) and sublethal toxicity (101 in situ measures of feeding inhibition). We measured the ecological status of each active biomonitoring site using the I2M2 metric (macroinvertebrate-based multimetric index), accounted for known stressors of nutrients and organic matter, hydromorphology and chemical toxicity. We observed a negative relationship between stressors (hydromorphology, nutrients and organic matter, and chemical toxicity) and the good ecological status. This relationship was aggravated in watercourses where toxicity indicators were degraded. We validated this hypothesis for instance with nutrients and organic matter like nitrates or hydromorphological conditions like percentage of vegetation on banks. Future international assesments concerning the role of in-field toxic pollution on the ecological status in a multi-stressor context are now possible via the current methodology.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Rios , Invertebrados , Ecotoxicologia , França , Ecossistema , Poluentes Químicos da Água/análise
13.
Talanta ; 253: 123806, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113334

RESUMO

Omics study exemplified by proteomics, lipidomics or metabolomics, provides the opportunity to get insight of the molecular modifications occurring in living organisms in response to contaminants or in different physiological conditions. However, individual omics discloses only a single layer of information leading to a partial image of the biological complexity. Multiplication of samples preparation and processing can generate analytical variations resulting from several extractions and instrumental runs. To get all the -omics information at the proteins, metabolites and lipids level coming from a unique sample, a specific sample preparation must be optimized. In this study, we streamlined a biphasic extraction procedure based on a MTBE/Methanol mixture to provide the simultaneous extraction of polar (proteins, metabolites) and apolar compounds (lipids) for multi-omics analyses from a unique biological sample by a liquid chromatography (LC)/mass spectrometry (MS)/MS-based targeted approach. We applied the methodology for the study of female amphipod Gammarus fossarum during the reproductive cycle. Multivariate data analyses including Partial Least Squares Discriminant Analysis and multiple factor analysis were applied for the integration of the multi-omics data sets and highlighted molecular signatures, specific to the different stages.


Assuntos
Multiômica , Proteômica , Feminino , Humanos , Análise de Dados , Lipidômica , Metabolômica
14.
Sci Total Environ ; 854: 158763, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115406

RESUMO

Despite progress in evaluation of risk assessment, knowledge gaps largely exist understanding the toxicity of nanoplastics in aquatic systems considering nanoplastics surface properties, environmental media characteristics and species ecological traits. In this study, amidine - functionalized polystyrene nanoparticles (PS-NPLs) of 20, 40, 60 and 100 nm are considered using Geneva lake water and mineral water to investigate the behavior and effects in neonate organisms of the plankton Daphnia magna and the benthos Gammarus fossarum. Key parameters including ζ-potential, z-average diameter, conductivity, polydispersity index, pH, EC50 were investigated. The results showed that the toxicity of PS-NPLs exhibited a dose-response relationship, size- and exposure condition-dependent trend. The smaller size PS-NPLs (20 and 40 nm) induced higher adverse effects than PS-NPLs of 60 and 100 nm in both water conditions and crustacean species. Moreover, PS-NPLs were found more toxic in the mineral water compared to lake water. Principal component analysis evidenced that the surface charge and aggregation behavior are the most influential toxicity of PS-NPLs factor for D. magna and Gammarus fossarum, respectively. These results highlight the relationship between PS-NPLs intrinsic properties, their transformation behavior, water properties and species-specificity in the evaluation of PS-NPLs biological effects on crustacean neonates in natural aquatic environments.


Assuntos
Anfípodes , Águas Minerais , Poluentes Químicos da Água , Animais , Microplásticos , Daphnia , Poluentes Químicos da Água/química , Poliestirenos/toxicidade , Lagos
15.
Environ Pollut ; 315: 120393, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223854

RESUMO

Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.


Assuntos
Anfípodes , Espécies Sentinelas , Animais , Masculino , Monitoramento Ambiental/métodos , Anfípodes/metabolismo , Água Doce/química , Biomarcadores/metabolismo , Espectrometria de Massas
16.
Environ Pollut ; 308: 119565, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35659553

RESUMO

Freshwater ecosystems are the main source of water for sustaining life on earth, and the biodiversity they support is the main source of valuable goods and services for human populations. Despite growing recognition of the impairment of freshwater ecosystems by micropollutant contamination, different conceptual and methodological considerations can newly be addressed to improve our understanding of the ecological impact into these ecosystems. Here, we originally combined in situ ecotoxicology and community ecology concepts to unveil the mechanisms structuring macroinvertebrate communities along a regional contamination gradient. The novelty of our study lies in the use of an innovative biomonitoring approach (measurement of metal contents in caged crustaceans) allowing to quantify and compare on a regional scale the levels of bioavailable metal contamination to which stream communities are exposed. We were hence able to identify 23 streams presenting a significant gradient of bioavailable metal contamination within the same catchment area in the South West of France, from which we also obtained data on the composition of resident macroinvertebrate communities. Analyses of structural and functional integrity of communities revealed an unexpected decoupling between taxonomic and functional diversity of communities in response to bioavailable metal contamination. We show that despite the negative impact of bioavailable metal contamination exposure on taxonomic diversity (with an average species loss of 17% in contaminated streams), functional diversity is maintained through a process of non-random species replacement by functional redundant species at the regional scale. Such unanticipated findings call for a deeper characterization of metal-tolerant communities' ability to cope with environmental variability in multi-stressed ecosystems.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce , Humanos , Invertebrados/fisiologia , Metais/toxicidade , Rios/química
17.
Sci Total Environ ; 844: 157003, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772548

RESUMO

Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.


Assuntos
Ecotoxicologia , Magnoliopsida , Animais , União Europeia , Humanos , Mamíferos , Plantas , Medição de Risco
18.
Environ Sci Pollut Res Int ; 29(29): 43448-43500, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35391640

RESUMO

A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).


Assuntos
Produtos Agrícolas , Ecossistema , Ecotoxicologia , Praguicidas , Animais , Praguicidas/efeitos adversos , Medição de Risco
19.
Sci Total Environ ; 808: 152148, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864038

RESUMO

A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Ecossistema , Rios , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Water Res ; 203: 117546, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419920

RESUMO

Aquatic ecosystems are exposed to multiple environmental pressures including chemical contamination. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) known as preoccupying substances for the environment. Active biomonitoring (ABM) is a surveillance method for polluted aquatic ecosystems measuring bioavailable contamination. In this work, the aim was to quantify the total links between environmental pressures and bioavailable contamination (for PAHs and PCBs) at the French national scale. Based on 245 sites experimented by ABM from 2017 to 2019, environmental pressures (anthropogenic pressures and environmental parameters) were defined (point source landfill density, point source urban density, point source industry density, point source road density, nonpoint source industry density, nonpoint source road density, nonpoint source urban density, nutrients and organic matter, slope, dams, straightness, coarse sediment, summer precipitation, hydrographic network density and watershed size) and characterized by one or a combination of measures called stressor indicators. The links between environmental pressures and bioavailable POPs contamination (ABM measure) at a large spatial scale were defined and quantified via structural equation modeling. Point source urban density, nutrients and organic matter, summer precipitation, straightness and point source industry density are correlated positively with PAH bioavailable contamination. In contrast, nonpoint source urban density, nonpoint source industry density, nonpoint source road density and watershed size are positively correlated with PCB bioavailable contamination. The dominant pressures linked to PAHs and PCBs were different, respectively local and large-scale pressures were linked to PAH bioavailable contamination, and only large-scale pressures were linked to PCB bioavailable contamination.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Ecossistema , Monitoramento Ambiental , Água Doce , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA