Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38826406

RESUMO

KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark. Contrary to earlier observations, KDM2B promotes ribosome biogenesis by stimulating the transcription of genes encoding ribosome biogenesis factors and ribosomal proteins, particularly those involved in the biogenesis of the 40S ribosomal subunits. Knockdown of KDM2B impaired the assembly of the small and large subunit processomes, as evidenced by specific defects in pre-ribosomal RNA processing. The final outcome was a decrease in the rate of ribosome assembly and in the abundance of ribosomes, and inhibition of mRNA translation. The inhibition of translation was distributed unequally among mRNAs with different features, suggesting that mRNA-embedded properties influence how mRNAs interpret ribosome abundance. This study identified a novel mechanism contributing to the regulation of translation and provided evidence for a rich biology elicited by a pathway that depends on KDM2B, and perhaps other regulators of translation.

2.
Metabolism ; 150: 155719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935302

RESUMO

INTRODUCTION: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. METHODS: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. RESULTS: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. CONCLUSIONS: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.


Assuntos
Aminoácidos , Epigênese Genética , Proteínas F-Box , Histona Desmetilases com o Domínio Jumonji , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Cromatina , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos/metabolismo , Glutamatos/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
3.
Leukemia ; 37(10): 2094-2106, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598282

RESUMO

Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.


Assuntos
Linfoma de Célula do Manto , Adulto , Humanos , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Microambiente Tumoral/genética
4.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37461630

RESUMO

Introduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. Results: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. Conclusions: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.

5.
Cell Mol Life Sci ; 80(4): 100, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933062

RESUMO

Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Lapatinib , Mitocôndrias , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Lapatinib/farmacologia , Camundongos Knockout , Mitocôndrias/patologia , Transição Epitelial-Mesenquimal
7.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613449

RESUMO

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Assuntos
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacologia , Azeite de Oliva/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular
9.
Commun Biol ; 4(1): 1179, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635782

RESUMO

AKT-phosphorylated IWS1 promotes Histone H3K36 trimethylation and alternative RNA splicing of target genes, including the U2AF65 splicing factor-encoding U2AF2. The predominant U2AF2 transcript, upon IWS1 phosphorylation block, lacks the RS-domain-encoding exon 2, and encodes a protein which fails to bind Prp19. Here we show that although both U2AF65 isoforms bind intronless mRNAs containing cytoplasmic accumulation region elements (CAR-E), only the RS domain-containing U2AF65 recruits Prp19 and promotes their nuclear export. The loading of U2AF65 to CAR-Elements was RS domain-independent, but RNA PolII-dependent. Virus- or poly(I:C)-induced type I IFNs are encoded by genes targeted by the pathway. IWS1 phosphorylation-deficient cells therefore, express reduced levels of IFNα1/IFNß1 proteins, and exhibit enhanced sensitivity to infection by multiple cytolytic viruses. Enhanced sensitivity of IWS1-deficient cells to Vesicular Stomatitis Virus and Reovirus resulted in enhanced apoptotic cell death via caspase activation. Inhibition of this pathway may therefore sensitize cancer cells to oncolytic viruses.

10.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503110

RESUMO

BACKGROUND: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. METHODS: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. RESULTS: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/ß-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. CONCLUSIONS: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.

11.
Nat Commun ; 12(1): 4624, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330897

RESUMO

AKT-phosphorylated IWS1 regulates alternative RNA splicing via a pathway that is active in lung cancer. RNA-seq studies in lung adenocarcinoma cells lacking phosphorylated IWS1, identified a exon 2-deficient U2AF2 splice variant. Here, we show that exon 2 inclusion in the U2AF2 mRNA is a cell cycle-dependent process that is regulated by LEDGF/SRSF1 splicing complexes, whose assembly is controlled by the IWS1 phosphorylation-dependent deposition of histone H3K36me3 marks in the body of target genes. The exon 2-deficient U2AF2 mRNA encodes a Serine-Arginine-Rich (RS) domain-deficient U2AF65, which is defective in CDCA5 pre-mRNA processing. This results in downregulation of the CDCA5-encoded protein Sororin, a phosphorylation target and regulator of ERK, G2/M arrest and impaired cell proliferation and tumor growth. Analysis of human lung adenocarcinomas, confirmed activation of the pathway in EGFR-mutant tumors and showed that pathway activity correlates with tumor stage, histologic grade, metastasis, relapse after treatment, and poor prognosis.


Assuntos
Adenocarcinoma de Pulmão/genética , Ciclo Celular/genética , Proliferação de Células/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/genética , Fatores de Transcrição/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Fator de Processamento U2AF/metabolismo , Fatores de Transcrição/metabolismo
12.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946867

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton's tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.

13.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051338

RESUMO

The Notch signaling pathway mediates cell-cell communication regulating cell differentiation and proliferation and cell fate decisions in various tissues. In the urinary bladder, Notch acts as a tumor suppressor in mice, while mutations in Notch pathway components have been identified in human bladder cancer as well. Here we report that the genetic inactivation of Notch in mice leads to downregulation of cell-cell and cell-ECM interaction components, including proteins previously implicated in interstitial cystitis/bladder pain syndrome (IC/BPS), structural defects and mucosal sloughing, inflammation, and leaky urine-blood barrier. Molecular profiling of ailing mouse bladders showed similarities with IC/BPS patient tissue, which also presented low Notch pathway activity as indicated by reduced expression of canonical Notch targets. Urothelial integrity was reconstituted upon exogenous reactivation of the Notch pathway, implying a direct involvement of Notch. Despite damage and inflammation, urothelial cells failed to proliferate, uncovering a possible role for α4 integrin in urothelial homeostasis. Our data uncover a broad role for Notch in bladder homeostasis involving urothelial cell crosstalk with the microenvironment.


Assuntos
Receptores Notch/metabolismo , Bexiga Urinária/patologia , Urotélio/patologia , Animais , Cistite/metabolismo , Cistite/patologia , Camundongos , Transdução de Sinais , Bexiga Urinária/metabolismo , Urotélio/metabolismo
14.
Cardiovasc Res ; 116(3): 576-591, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228183

RESUMO

AIMS: Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS: Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 µg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 µg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 µg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION: Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Fármacos Cardiovasculares/farmacologia , Doxorrubicina/toxicidade , Cardiopatias/prevenção & controle , Neoplasias Mamárias Experimentais/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Simendana/farmacologia , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiotoxicidade , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Masculino , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Fatores de Tempo
15.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792060

RESUMO

Through the progressive accumulation of genetic and epigenetic alterations in cellular physiology, non-small-cell lung cancer (NSCLC) evolves in distinct steps involving mutually exclusive oncogenic mutations in K-Ras or EGFR along with inactivating mutations in the p53 tumor suppressor. Herein, we show two independent in vivo lung cancer models in which CHUK/IKK-α acts as a major NSCLC tumor suppressor. In a novel transgenic mouse strain, wherein IKKα ablation is induced by tamoxifen (Tmx) solely in alveolar type II (AT-II) lung epithelial cells, IKKα loss increases the number and size of lung adenomas in response to the chemical carcinogen urethane, whereas IKK-ß instead acts as a tumor promoter in this same context. IKKα knockdown in three independent human NSCLC lines (independent of K-Ras or p53 status) enhances their growth as tumor xenografts in immune-compromised mice. Bioinformatics analysis of whole transcriptome profiling followed by quantitative protein and targeted gene expression validation experiments reveals that IKKα loss can result in the up-regulation of activated HIF-1-α protein to enhance NSCLC tumor growth under hypoxic conditions in vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/genética , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Quinase I-kappa B/deficiência , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima , Proteínas ras/genética
16.
Cell Oncol (Dordr) ; 40(4): 303-339, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748501

RESUMO

BACKGROUND: Cancer is one of the leading causes of mortality. The neoplastic transformation of normal cells to cancer cells is caused by a progressive accumulation of genetic and epigenetic alterations in oncogenes, tumor suppressor genes and epigenetic regulators, providing cells with new properties, collectively known as the hallmarks of cancer. During the process of neoplastic transformation cells progressively acquire novel characteristics such as unlimited growth potential, increased motility and the ability to migrate and invade adjacent tissues, the ability to spread from the tumor of origin to distant sites, and increased resistance to various types of stresses, mostly attributed to the activation of genetic stress-response programs. Accumulating evidence indicates a crucial role of microRNAs (miRNAs or miRs) in the initiation and progression of cancer, acting either as oncogenes (oncomirs) or as tumor suppressors via several molecular mechanisms. MiRNAs comprise a class of small ~22 bp long noncoding RNAs that play a key role in the regulation of gene expression at the post-transcriptional level, acting as negative regulators of mRNA translation and/or stability. MiRNAs are involved in the regulation of a variety of biological processes including cell cycle progression, DNA damage responses and apoptosis, epithelial-to-mesenchymal cell transitions, cell motility and stemness through complex and interactive transcription factor-miRNA regulatory networks. CONCLUSIONS: The impact and the dynamic potential of miRNAs with oncogenic or tumor suppressor properties in each stage of the multistep process of tumorigenesis, and in the adaptation of cancer cells to stress, are discussed. We propose that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses. The role of specific tumor-derived exosomes containing miRNAs and their use as biomarkers in diagnosis and prognosis, and as therapeutic targets, are also discussed.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Neoplasias/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias/patologia , Prognóstico
17.
Mutat Res ; 700(1-2): 51-61, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20472095

RESUMO

In the present study we used a 6-min daily exposure of dipteran flies, Drosophila melanogaster, to GSM-900MHz (Global System for Mobile Telecommunications) mobile phone electromagnetic radiation (EMR), to compare the effects between the continuous and four different intermittent exposures of 6min total duration, and also to test whether intermittent exposure provides any cumulative effects on the insect's reproductive capacity as well as on the induction of apoptotic cell death. According to our previous experiments, a 6-min continuous exposure per day for 5 days to GSM-900MHz and DCS-1800MHz (Digital Cellular System) mobile phone radiation, brought about a large decrease in the insect's reproductive capacity, as defined by the number of F(1) pupae. This decrease was found to be non-thermal and correlated with an increased percentage of induced fragmented DNA in the egg chambers' cells at early- and mid-oogenesis. In the present experiments we show that intermittent exposure also decreases the reproductive capacity and alters the actin-cytoskeleton network of the egg chambers, another known aspect of cell death that was not investigated in previous experiments, and that the effect is also due to DNA fragmentation. Intermittent exposures with 10-min intervals between exposure sessions proved to be almost equally effective as continuous exposure of the same total duration, whereas longer intervals between the exposures seemed to allow the organism the time required to recover and partly overcome the above-mentioned effects of the GSM exposure.


Assuntos
Apoptose/efeitos da radiação , Telefone Celular , Campos Eletromagnéticos , Animais , Morte Celular/efeitos da radiação , Fragmentação do DNA , Drosophila melanogaster/efeitos da radiação , Feminino , Óvulo/efeitos da radiação , Doses de Radiação , Reprodução/efeitos da radiação
18.
Int J Radiat Biol ; 86(5): 345-57, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20397839

RESUMO

PURPOSE: To examine the bioactivity of GSM 900 and 1800 (Global System for Mobile Telecommunications) radiations, in relation to the distance from the antenna or to the radiation-field intensities. MATERIALS AND METHODS: Drosophila melanogaster adult insects were exposed to the radiation of a GSM 900/1800 mobile phone antenna at different distances ranging from 0 to 100 cm, and the effect on their reproductive capacity and cell death induction in the gonads by the use of TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay, was studied. RESULTS: These radiations/fields decreased the reproductive capacity by cell death induction, at all the different distances tested. The effect diminished with the distance/decreasing intensities. An increased bioactivity 'window' was revealed at distances of 20-30 cm from the mobile phone antenna, (radiation intensity around 10 microW/cm(2)) where the effect became highest, in relation to smaller or longer distances. The effect diminished considerably for distances longer than 40-50 cm and became not evident for distances longer than 1 m or radiation intensities smaller than 1 microW/cm(2). CONCLUSIONS: GSM bioactivity is highest for intensities down to less than 10 microW/cm(2) and still evident until 1 microW/cm(2) exhibiting 'window' effects.


Assuntos
Telefone Celular , Drosophila melanogaster/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Animais , Morte Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Drosophila melanogaster/fisiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Gônadas/metabolismo , Gônadas/patologia , Gônadas/efeitos da radiação , Marcação In Situ das Extremidades Cortadas , Masculino , Reprodução/fisiologia , Reprodução/efeitos da radiação
19.
Electromagn Biol Med ; 26(1): 33-44, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17454081

RESUMO

An increasing number of studies find that pulsed Radio Frequency (RF), electromagnetic radiation of both systems of digital mobile telephony, established and commonly used in Europe during the last years, GSM 900 MHz (Global System for Mobile telecommunications) and DCS 1800 MHz (Digital Cellular System), exert intense biological action on different organisms and cells (Hardell et al., 2006; Hyland, 2000; Kundi, 2004; Panagopoulos et al., 2004, 2007). The two types of cellular telephony radiation use different carrier frequencies and give different frequency spectra, but they usually also differ in intensity, as GSM 900 MHz antennas operate at about double the power output than the corresponding DCS 1800 MHz ones. In our present experiments, we used a model biological system, the reproductive capacity of Drosophila melanogaster, to compare the biological activity between the two systems of cellular mobile telephony radiation. Both types of radiation were found to decrease significantly and non thermally the insect's reproductive capacity, but GSM 900 MHz seems to be even more bioactive than DCS 1800 MHz. The difference seems to be dependent mostly on field intensity and less on carrier frequency.


Assuntos
Telefone Celular , Drosophila melanogaster/efeitos da radiação , Radiação , Ondas de Rádio , Reprodução/efeitos da radiação , Animais , Linhagem Celular , Humanos , Doses de Radiação , Radiometria
20.
Mutat Res ; 626(1-2): 69-78, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17045516

RESUMO

In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay--a well known technique widely used for detecting fragmented DNA in various types of cells--was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.


Assuntos
Morte Celular/efeitos da radiação , Telefone Celular , Animais , Drosophila melanogaster , Feminino , Marcação In Situ das Extremidades Cortadas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA