Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680085

RESUMO

Haemagogus (Haemagogus) janthinomys (Dyar, 1921), the major neotropical vector of sylvatic yellow fever virus, is notoriously difficult to maintain in captivity. It has never been reared beyond an F1 generation, and almost no experimental transmission studies have been performed with this species since the 1940s. Herein we describe installment hatching, artificial blood feeding, and forced-mating techniques that enabled us to produce small numbers of F3 generation Hg. janthinomys eggs for the first time. A total of 62.8% (1562/2486) F1 generation eggs hatched during ≤10 four-day cycles of immersion in a bamboo leaf infusion followed by partial drying. Hatching decreased to 20.1% (190/944) in the F2 generation for eggs laid by mosquitoes copulated by forced mating. More than 85% (79/92) female F2 mosquitoes fed on an artificial blood feeding system. While we were unable to maintain a laboratory colony of Hg. janthinomys past the F3 generation, our methods provide a foundation for experimental transmission studies with this species in a laboratory setting, a critical capacity in a region with hyper-endemic transmission of dengue, Zika, and chikungunya viruses, all posing a risk of spillback into a sylvatic cycle.


Assuntos
Substitutos Sanguíneos , Culicidae , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Feminino , Mosquitos Vetores , Vírus da Febre Amarela , Brasil
2.
PLoS One ; 13(1): e0190352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293631

RESUMO

Zika is a re-emerging infection that has been considered a major threat to global public health. Currently at least 100 countries are at risk of Zika virus (ZIKV) transmission. Aedes aegypti is the main mosquito vector in the Americas. This vector is exposed to, and interacts symbiotically with a variety of microorganisms in its environment, which may result in the formation of a lifetime association. Here, the unknown effect that ZIKV exerts on the dynamic bacterial community harbored by this mosquito vector was investigated using a metagenomic analysis of its microbiota. Groups of Ae. aegypti were experimentally fed on sugar, blood and blood mixed with ZIKV, and held for 3 to 7 days after blood meal and eggs development respectively. The infected groups were processed by qPCR to confirm the presence of ZIKV. All groups were analyzed by metagenomics (Illumina Hiseq Sequencing) and 16S rRNA amplicon sequences were obtained to create bacterial taxonomic profiles. A core microbiota and exclusive bacterial taxa were identified that incorporate 50.5% of the predicted reads from the dataset, with 40 Gram-negative and 9 Gram-positive families. To address how ZIKV invasion may disturb the ecological balance of the Ae. aegypti microbiota, a CCA analysis coupled with an explanatory matrix was performed to support the biological interpretation of shifts in bacterial signatures. Two f-OTUs appeared as potential biomarkers of ZIKV infection: Rhodobacteraceae and Desulfuromonadaceae. Coincidentally, both f-OTUs were exclusively present in the ZIKV- infected blood-fed and ZIKV- infected gravid groups. In conclusion, this study shows that bacterial symbionts act as biomarkers of the insect physiological states and how they respond as a community when ZIKV invades Ae. aegypti. Basic knowledge of local haematophagous vectors and their associated microbiota is relevant when addressing transmission of vector-borne infectious diseases in their regional surroundings.


Assuntos
Aedes/microbiologia , Bactérias/classificação , Biodiversidade , Metagenômica , Infecção por Zika virus/microbiologia , Aedes/virologia , Animais , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mosquitos Vetores , RNA Ribossômico 16S/genética
3.
Acta Trop ; 164: 431-437, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771419

RESUMO

Brazil reported the majority of the dengue cases in Americas during the last two decades, where the occurrence of human dengue cases is exclusively attributed to the Aedes (Stegomyia) aegypti (Linnaeus). Nowadays, other recognized Dengue virus (DENV) vector in Asian countries, Aedes (Stegomyia) albopictus (Skuse), has been detected in more than half of the 5565 Brazilian municipalities. Therefore, the aim of the present study was to investigate the presence of, and determine the Ae. albopictus' dynamics influenced by spatiotemporal characteristics in a dengue-endemic risk city of Belo Horizonte, Minas Gerais State's capital. Aedes albopictus were collected across four consecutive DENV transmission seasons from 2010 to 2014. These mosquitoes were caught in three selected districts, which had been reported in the previous ten years as having high mosquito densities and an elevated concentration of human dengue cases during epidemic seasons. All field-caught Ae. albopictus was individually processed by real-time RT-PCR, to research the DENV presence. The third season (p<0.05) and the Pampulha district (p<0.05) had the highest proportions of field-caught Ae. albopictus, respectively. The second season had the highest proportion of DENV-infected field-caught females (p<0.05), but there was no difference among the proportions of DENV-infected Ae. albopictus when comparing the collection in the three districts (p=0.98). Minimum (p=0.004) and maximum (p<0.0001) temperature were correlated with the field-caught Ae. albopictus in four different periods and districts. In the generalized linear model of Poisson, the field-caught DENV-infected Ae. albopictus (p=0.005), East district (p=0.003), minimum temperature (p<0.0001) and relative humidity (p=0.001) remained associated with the total number of human dengue cases. Our study demonstrated that the number of field-caught DENV-infected Ae. albopictus was inversed correlated with the number of human dengue cases. Our study raises the possibility that the DENV circulating in mosquitoes Ae. albopictus is happening in non-epidemic periods, showing that this species may be keeping only the presence of the virus in nature. Further long-term studies are necessary to better understand the role of Ae. albopictus in DENV transmission and or its vectorial competence in Belo Horizonte and in other endemic cities in Brazil and in the New World countries.


Assuntos
Aedes/virologia , Cidades , Vírus da Dengue/fisiologia , Dengue/epidemiologia , Insetos Vetores/virologia , Animais , Brasil , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Análise Espaço-Temporal , Temperatura
4.
Parasit Vectors ; 7: 320, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25015526

RESUMO

BACKGROUND: In Brazil, dengue epidemics erupt sporadically throughout the country and it is unclear if outbreaks may initiate a sustainable transmission cycle. There are few studies evaluating the ability of Brazilian Aedes aegypti populations to transmit dengue virus (DENV). The aim of this study was to compare DENV susceptibility of field-captured Ae. aegypti populations from nine distinct geographic areas of the city of Belo Horizonte in 2009 and 2011. Infection Rate (IR), Vector Competence (VC) and Disseminated Infection Rate (DIR) were determined. METHODS: Aedes aegypti eggs from each region were collected and reared separately in an insectary. Adult females were experimentally infected with DENV-2 and the virus was detected by qPCR in body and head samples. Data were analyzed with the Statistical Package for the Social Sciences version 17. RESULTS: IR varied from 40.0% to 82.5% in 2009 and 60.0% to 100.0% in 2011. VC ranged from 25.0% to 77.5% in 2009 and 25.0% to 80.0% in 2011. DIR oscillated from 68.7% to 100.0% in 2009 and 38.4% to 86.8 in 2011. When the results were evaluated by a logistic model using IR as covariate, North, Barreiro, South-Central and Venda Nova showed the strongest association in 2009. In 2011, a similar association was observed for South-Central, Venda Nova, West and Northeast regions. Using VC as covariate, South-Central and Venda Nova showed the most relevant association in 2009. In 2011, South-Central, Venda Nova and Barreiro presented the greatest revelation associations. When DIR data were analyzed by logistic regression models, Pampulha, South-Central, Venda Nova, West, Northeast and East (2009) as well as South-Central, Venda Nova and West (2011) were the districts showing the strongest associations. CONCLUSIONS: We conclude that Ae. aegypti populations from Belo Horizonte exhibit wide variation in vector competence to transmit dengue. Therefore, vector control strategies should be adapted to the available data for each region. Further analysis should be conducted to better understand the reasons for this large variability in vector competence and how these parameters correlate with epidemiological findings in subsequent years.


Assuntos
Aedes/fisiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/epidemiologia , Insetos Vetores , Animais , Brasil/epidemiologia , Dengue/virologia , Doenças Endêmicas , Feminino , Cabeça/virologia , Glândulas Salivares/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA