Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 19(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296078

RESUMO

Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Endocitose , Células Epiteliais/metabolismo , Neurônios/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Camundongos
2.
Microbes Infect ; 12(14-15): 1208-18, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20870031

RESUMO

Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G(2)/M phase transition in human cell lines. We report here the first direct functional analysis of Cif(Pl), from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cif(Pl) gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cif(Pl) was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. Cif(Pl) inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G(2)/M phase transition. It also triggered host cell death by apoptosis. The integrity of the Cif(Pl) catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Ciclo Celular , Gafanhotos/microbiologia , Photorhabdus/patogenicidade , Fatores de Virulência/metabolismo , Estruturas Animais/microbiologia , Animais , Linhagem Celular , Hemolinfa/microbiologia
3.
Microbes Infect ; 12(3): 182-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20034588

RESUMO

Photorhabdus asymbiotica is unique among the entomopathogenic bacteria of this genus in also being able to infect humans, leading to its isolation from some clinical samples. Recent comparative genomics data and the results of studies of interactions between bacteria and cells provide insight into the adaptation of this bacterium to its new niche, the human body.


Assuntos
Photorhabdus/patogenicidade , Proteínas de Bactérias/genética , Genoma Bacteriano , Humanos , Photorhabdus/genética , Virulência , Fatores de Virulência/genética
4.
PLoS One ; 4(3): e4855, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19308257

RESUMO

The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1) and G(2) cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21(waf1/cip1) and p27(kip1) and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.


Assuntos
Bactérias/patogenicidade , Proteínas de Bactérias/fisiologia , Ciclo Celular , Enterobacter/química , Animais , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Citoesqueleto/metabolismo , Enterobacter/patogenicidade , Proteínas de Escherichia coli , Interfase , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA