Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(5): 934-946, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37252102

RESUMO

The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) play a central role in regulating cell signalling pathways and, as such, have become therapeutic targets for diseases such as cancer, neurodegeneration and immunological disorders. Many of the PI5P4Kα inhibitors that have been reported to date have suffered from poor selectivity and/or potency and the availability of better tool molecules would facilitate biological exploration. Herein we report a novel PI5P4Kα inhibitor chemotype that was identified through virtual screening. The series was optimised to deliver ARUK2002821 (36), a potent PI5P4Kα inhibitor (pIC50 = 8.0) which is selective vs. other PI5P4K isoforms and has broad selectivity against lipid and protein kinases. ADMET and target engagement data are provided for this tool molecule and others in the series, as well as an X-ray structure of 36 solved in complex with its PI5P4Kα target.

2.
J Med Chem ; 66(1): 804-821, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516442

RESUMO

Owing to their central role in regulating cell signaling pathways, the phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are attractive therapeutic targets in diseases such as cancer, neurodegeneration, and immunological disorders. Until now, tool molecules for these kinases have been either limited in potency or isoform selectivity, which has hampered further investigation of biology and drug development. Herein we describe the virtual screening workflow which identified a series of thienylpyrimidines as PI5P4Kγ-selective inhibitors, as well as the medicinal chemistry optimization of this chemotype, to provide potent and selective tool molecules for further use. In vivo pharmacokinetics data are presented for exemplar tool molecules, along with an X-ray structure for ARUK2001607 (15) in complex with PI5P4Kγ, along with its selectivity data against >150 kinases and a Cerep safety panel.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Isoformas de Proteínas , Encéfalo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
3.
European J Org Chem ; 2017(34): 5015-5024, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28983191

RESUMO

Cyclopropanes provide important design elements in medicinal chemistry and are widely present in drug compounds. Here we describe a strategy and extensive synthetic studies for the preparation of a diverse collection of cyclopropane-containing lead-like compounds, fragments and building blocks exploiting a single precursor. The bifunctional cyclopropane (E/Z)-ethyl 2-(phenylsulfanyl)-cyclopropane-1-carboxylate was designed to allow derivatization through the ester and sulfide functionalities to topologically varied compounds designed to fit in desirable chemical space for drug discovery. A cobalt-catalyzed cyclopropanation of phenyl vinyl sulfide affords these scaffolds on multigram scale. Divergent, orthogonal derivatization is achieved through hydrolysis, reduction, amidation and oxidation reactions as well as sulfoxide-magnesium exchange/functionalization. The cyclopropyl Grignard reagent formed from sulfoxide exchange is stable at 0 °C for > 2 h, which enables trapping with various electrophiles and Pd-catalyzed Negishi cross-coupling reactions. The library prepared, as well as a further virtual elaboration, is analyzed against parameters of lipophilicity (ALog P), MW and molecular shape by using the LLAMA (Lead-Likeness and Molecular Analysis) software, to illustrate the success in generating lead-like compounds and fragments.

4.
Chem Commun (Camb) ; 53(2): 348-351, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27929152

RESUMO

Direct synthesis of NH-sulfoximines from sulfides has been achieved through O and NH transfer in the same reaction, occurring with complete selectivity. The reaction is mediated by bisacetoxyiodobenzene under simple conditions and employs inexpensive N-sources. Preliminary studies indicate that NH-transfer is likely to be first, followed by oxidation, but the reaction proceeds successfully in either order. A wide range of functional groups and biologically relevant compounds are tolerated. The use of AcO15NH4 affords 15N-labeled compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA