Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 213-220, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38310083

RESUMO

Chest tightness variant asthma (CTVA) is an atypical form of asthma with chest tightness as the sole or predominant symptom. The underlying receptors for chest tightness are bronchial C-fibers or rapidly adapting receptors. The nerve impulses are transmitted via the vagus nerve and processed in different regions of the cerebral cortex. Chest tightness is associated with sensory perception, and CTVA patients may have heightened ability to detect subtle changes in lung function, but such sensory perception is unrelated to respiratory muscle activity, lung hyperinflation, or mechanical loading of the respiratory system. Airway inflammation, pulmonary ventilation dysfunction (especially involving small airways), and airway hyperresponsiveness may underlie the sensation of chest tightness. CTVA patients are prone to comorbid anxiety and depression, which share similar central nervous system processing pathways with dyspnea, suggesting a possible neurological basis for the development of CTVA. This article examines the recognition and mechanisms of chest tightness, and explores the pathogenesis of CTVA, focusing on its association with airway inflammation, ventilation dysfunction, airway hyperresponsiveness, and psychosocial factors.


Assuntos
Asma , Humanos , Asma/fisiopatologia
2.
Clin Transl Med ; 10(5): e178, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32997402

RESUMO

BACKGROUND: Asthmatic patients with chest tightness as their only presenting symptom (chest tightness variant asthma [CTVA]) have clinical characteristics of eosinophilic airway inflammation similar to those of classic asthma (CA); however, whether CTVA has similar response to antiasthma treatment as compared with CA remains unclear. OBJECTIVE: The response of 76 CTVA patients to standard asthma treatments with inhaled corticosteroids with long-acting beta-agonists was explored in a 52-week multicenter, prospective, real-world study. RESULTS: After 52 weeks of treatment with therapy regimens used for CA, the mean 5-point Asthma Control Questionnaire (ACQ-5) score decreased markedly from 1.38(first administration) to 0.71 (52 weeks, mean decrease: 0.674, 95%CI: 0.447-0.900, P<.001).The mean asthma quality-of-life questionnaire (AQLQ) score increased from 5.77 (first administration) to 6.20 (52 weeks, mean increase: 0.441, 95% CI 0.258-0.625, P<.001). Furthermore, at week 52, FVC, FEV1 %, the diurnal variation in PEFand the PD20-FEV1 were significantly improved. Subgroup analysis revealed that the patients at first administration in the responsive group had higher ACQ-5 scores than those in the nonresponsive group (P < .05). CONCLUSION: In conclusion, patients with CTVA had a good therapeutic response to the guideline-recommended routine treatment (containing inhaled corticosteroids). The association between the treatment response and the severity of CTVA suggested that CTVA patients with higher ACQ-5 scores had better therapeutic effects.

3.
Mol Cell ; 78(4): 714-724.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32353258

RESUMO

Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the oldest DNA strands are inherited exclusively by one of the two daughter cells. Although this phenomenon has been observed across various organisms, the mechanism and physiological relevance of this event remain poorly defined. Here, we demonstrate that DNA replication stress can trigger NDS in human cells. This biased inheritance of old template DNA is associated with the asymmetric DNA damage response (DDR), which derives at least in part from telomeric DNA. Mechanistically, we reveal that the ATR/CHK1 signaling pathway plays an essential role in mediating NDS. We show that this biased segregation process leads to cell-cycle arrest and cell death in damaged daughter cells inheriting newly replicated DNA. These data therefore identify a key role for NDS in the maintenance of genomic integrity within cancer cell populations undergoing replication stress due to oncogene activation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cromossomos Humanos/genética , Dano ao DNA , Replicação do DNA , Mitose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem/genética , Segregação de Cromossomos , Células HeLa , Humanos , Transdução de Sinais
4.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L269-L279, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407865

RESUMO

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/- mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/- mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


Assuntos
Asma/imunologia , Histona Desacetilase 2/imunologia , Interleucina-17/imunologia , Pyroglyphidae/imunologia , Animais , Asma/genética , Asma/patologia , Modelos Animais de Doenças , Feminino , Histona Desacetilase 2/genética , Interleucina-17/genética , Masculino , Camundongos , Camundongos Knockout , Células Th2/patologia
5.
Acta Pharmacol Sin ; 40(6): 769-780, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30446733

RESUMO

Tissue factor (TF)-dependent coagulation contributes to lung inflammation and the pathogenesis of acute lung injury (ALI). In this study, we explored the roles of targeted endothelial anticoagulation in ALI using two strains of transgenic mice expressing either a membrane-tethered human tissue factor pathway inhibitor (hTFPI) or hirudin fusion protein on CD31+ cells, including vascular endothelial cells (ECs). ALI was induced by intratracheal injection of LPS, and after 24 h the expression of TF and protease-activated receptors (PARs) on EC in lungs were assessed, alongside the extent of inflammation and injury. The expression of TF and PARs on the EC in lungs was upregulated after ALI. In the two strains of transgenic mice, expression of either of hTFPI or hirudin by EC was associated with significant reduction of inflammation, as assessed by the extent of leukocyte infiltration or the levels of proinflammatory cytokines, and promoted survival after LPS-induced ALI. The beneficial outcomes were associated with inhibition of the expression of chemokine CCL2 in lung tissues. The protection observed in the CD31-TFPI-transgenic strain was abolished by injection of an anti-hTFPI antibody, but not by prior engraftment of the transgenic strains with WT bone marrow, confirming that the changes observed were a specific transgenic expression of anticoagulants by EC. These results demonstrate that the inflammation in ALI is TF and thrombin dependent, and that expression of anticoagulants by EC significantly inhibits the development of ALI via repression of leukocyte infiltration, most likely via inhibition of chemokine gradients. These data enhance our understanding of the pathology of ALI and suggest a novel therapeutic strategy for treatment.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Hirudinas/metabolismo , Inflamação/metabolismo , Lipoproteínas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Coagulação Sanguínea/fisiologia , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/fisiologia , Hirudinas/genética , Humanos , Inflamação/induzido quimicamente , Sanguessugas/química , Lipopolissacarídeos , Lipoproteínas/genética , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pseudomonas aeruginosa/química , Receptores Ativados por Proteinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
6.
Cell Death Differ ; 26(9): 1859-1860, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30546073

RESUMO

Since the publication of the article, the authors became aware that Figs. 1c, 5k and 6m contained errors in representative image and PAS score in control groups. The corrected Figs. 1c, 5k, and 6m are given below, and the figure legends are the same as original.

7.
Crit Care ; 22(1): 301, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442203

RESUMO

BACKGROUND: Aerosolized antibiotics have been proposed as a novel and promising treatment option for the treatment of ventilator-associated pneumonia (VAP). However, the optimum aerosolized antibiotics for VAP remain uncertain. METHODS: We included studies from two systematic reviews and searched PubMed, EMBASE, and Cochrane databases for other studies. Eligible studies included randomized controlled trials and observational studies. Extracted data were analyzed by pairwise and network meta-analysis. RESULTS: Eight observational and eight randomized studies were identified for this analysis. By pairwise meta-analysis using intravenous antibiotics as the reference, patients treated with aerosolized antibiotics were associated with significantly higher rates of clinical recovery (risk ratio (RR) 1.21, 95% confidence interval (CI) 1.09-1.34; P = 0.001) and microbiological eradication (RR 1.42, 95% CI 1.22-1.650; P < 0.0001). There were no significant differences in the risks of mortality (RR 0.88, 95% CI 0.74-1.04; P = 0.127) or nephrotoxicity (RR 1.00, 95% CI 0.72-1.39; P = 0.995). Using network meta-analysis, clinical recovery benefits were seen only with aerosolized tobramycin and colistin (especially tobramycin), and microbiological eradication benefits were seen only with colistin. Aerosolized tobramycin was also associated with significantly lower mortality when compared with aerosolized amikacin and colistin and intravenous antibiotics. The assessment of rank probabilities indicated aerosolized tobramycin presented the greatest likelihood of having benefits for clinical recovery and mortality, and aerosolized colistin presented the best benefits for microbiological eradication. CONCLUSIONS: Aerosolized antibiotics appear to be a useful treatment for VAP with respect to clinical recovery and microbiological eradication, and do not increase mortality or nephrotoxicity risks. Our network meta-analysis in patients with VAP suggests that clinical recovery benefits are associated with aerosolized tobramycin and colistin (especially tobramycin), microbiological eradication with aerosolized colistin, and survival with aerosolized tobramycin, mostly based on observational studies. Due to the low levels of evidence, definitive recommendations cannot be made before additional, large randomized studies are carried out.


Assuntos
Administração por Inalação , Antibacterianos/administração & dosagem , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Antibacterianos/uso terapêutico , Teorema de Bayes , Humanos , Metanálise em Rede , Resultado do Tratamento
8.
Toxicol Lett ; 294: 145-155, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29787794

RESUMO

Particulate matter (PM) has been implicated as a risk factor for human airway disorders. However, the biological mechanisms underlying the correlation between PM exposure and adverse airway effects have not yet been fully clarified. The objective of this study was to explore the possible role of early growth response gene 1 (Egr-1) in PM-induced toxic effects in pulmonary inflammation and mucus hyperproduction in vitro and in vivo. Particulate matter exposure induced a rapid Egr-1 expression in human bronchial epithelial (HBE) cells and in mouse lungs. Genetic blockage of Egr-1 markedly reduced PM-induced inflammatory cytokines, e.g., IL6 and IL8, and MUC5AC in HBE cells, and these effects were mechanistically mediated by the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) pathways, respectively. Egr-1-knockout mice displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Moreover, polycyclic aromatic hydrocarbons (PAHs) contained in the PM also induced Egr-1 expression, and also played a role in the inflammatory responses and mucus production. Taken together, our data reveal novel Egr-1 signaling that mediates the NF-κB and AP-1 pathways to orchestrate PM-induced pulmonary inflammation and mucus hyperproduction, suggesting that Egr-1 inhibition could be an effective therapeutic approach for airway disorders or disease exacerbations induced by airborne particulate pollution.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Muco/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Mucosa Respiratória/efeitos dos fármacos , Poluição do Ar/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Interleucina-6/agonistas , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/agonistas , Interleucina-8/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Knockout , Mucina-5AC/agonistas , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Organismos Livres de Patógenos Específicos , Estados Unidos , Saúde da População Urbana
9.
J Allergy Clin Immunol ; 140(2): 418-430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28043871

RESUMO

BACKGROUND: Asthmatic inflammation is dominated by accumulation of either eosinophils, neutrophils, or both in the airways. Disposal of these inflammatory cells is the key to disease control. Eosinophilic airway inflammation is responsive to corticosteroid treatment, whereas neutrophilic inflammation is resistant and increases the burden of global health care. Corticosteroid-resistant neutrophilic asthma remains mechanistically poorly understood and requires novel effective therapeutic strategies. OBJECTIVE: We sought to explore the underlying mechanisms of airway inflammation persistence, as well as corticosteroid resistance, and to investigate a new strategy of effective treatment against corticosteroid-insensitive neutrophilic asthma. METHODS: Mouse models of either eosinophil-dominated or neutrophil-dominated airway inflammation were used in this study to test corticosteroid sensitivity in vivo and in vitro. We also used vav-Bcl-2 transgenic mice to confirm the importance of granulocytes apoptosis in the clearance of airway inflammation. Finally, the Bcl-2 inhibitors ABT-737 or ABT-199 were tested for their therapeutic effects against eosinophilic or neutrophilic airway inflammation and airway hyperresponsiveness. RESULTS: Overexpression of Bcl-2 protein was found to be responsible for persistence of granulocytes in bronchoalveolar lavage fluid after allergic challenge. This was important because allergen-induced airway inflammation aggravated and persisted in vav-Bcl-2 transgenic mice, in which nucleated hematopoietic cells were overexpressed with Bcl-2 and resistant to apoptosis. The Bcl-2 inhibitors ABT-737 or ABT-199 play efficient roles in alleviation of either eosinophilic or corticosteroid-resistant neutrophilic airway inflammation by inducing apoptosis of immune cells, such as eosinophils, neutrophils, TH2 cells, TH17 cells, and dendritic cells. Moreover, these inhibitors were found to be more efficient than steroids to induce granulocyte apoptosis ex vivo from patients with severe asthma. CONCLUSION: Apoptosis of inflammatory cells is essential for clearance of allergen-induced airway inflammation. The Bcl-2 inhibitors ABT-737 or ABT-199 might be promising drugs for the treatment of airway inflammation, especially for corticosteroid-insensitive neutrophilic airway inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Compostos de Bifenilo/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos/imunologia , Compostos de Alúmen , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/imunologia , Asma/metabolismo , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Adjuvante de Freund/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Nitrofenóis/farmacologia , Ovalbumina/imunologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
10.
Sci Rep ; 6: 21515, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861679

RESUMO

Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-ß1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-ß1. Suhuang might be a promising therapy for patients with allergic asthma in the future.


Assuntos
Asma/tratamento farmacológico , Medicina Tradicional Chinesa , Preparações de Plantas/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lamiaceae/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina
11.
Sci Rep ; 6: 18680, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739627

RESUMO

Ozone is a common environmental air pollutant leading to respiratory illness. The mechanisms regulating ozone-induced airway inflammation remain poorly understood. We hypothesize that ozone-triggered inflammasome activation and interleukin (IL)-1 production regulate neutrophilic airway inflammation through IL-17A. Pulmonary neutrophilic inflammation was induced by extended (72 h) low-dose (0.7 ppm) exposure to ozone. IL-1 receptor 1 (Il1r1)(-/-), Il17a(-/-) mice and the caspase-1 inhibitor acetyl-YVAD-chloromethylketone (Ac-YVAD-cmk) were used for in vivo studies. Cellular inflammation and protein levels in bronchial alveolar lavage fluid (BALF), cytokines, and IL-17A-producing γδT-cells, as well as mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) release, and inflammasome activation in lung macrophages were analyzed. Ozone-induced neutrophilic airway inflammation, accompanied an increased production of IL-1ß, IL-18, IL-17A, Granulocyte-colony stimulating factor (G-CSF), Interferon-γ inducible protein 10 (IP-10) and BALF protein in the lung. Ozone-induced IL-17A production was predominantly in γδT-cells, and Il17a-knockout mice exhibited reduced airway inflammation. Lung macrophages from ozone-exposed mice exhibited higher levels of mitochondrial ROS, enhanced cytosolic mtDNA, increased caspase-1 activation, and higher production of IL-1ß. Il1r1-knockout mice or treatment with Ac-YVAD-cmk decreased the IL-17A production and subsequent airway inflammation. Taken together, we demonstrate that ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade.


Assuntos
Caspase 1/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Neutrófilos/metabolismo , Ozônio/efeitos adversos , Pneumonia/metabolismo , Animais , Modelos Animais de Doenças , Inflamassomos/metabolismo , Interleucina-17/genética , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
Respirology ; 20(3): 426-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25677967

RESUMO

BACKGROUND AND OBJECTIVE: Some types of T lymphocytes, especially cytotoxic T-cells (Tc1) and T-helper (Th17) cells, play a pivotal role in cigarette smoke-induced lung diseases. However, whether Tc17 cells are involved remains largely unknown. We investigated Tc17 involvement using a cigarette smoke-exposure model. METHODS: Groups of mice were exposed to cigarette smoke or filtered air. At weeks 2, 8, 12 and 24, mice were sacrificed to observe histological changes by HE stain and/or immunohistochemical staining. The frequency of T cell subsets in the lung and spleen were detected by flow cytometry. In addition, the expression levels of T cell-related factors were measured by real-time polymerase chain reaction or enzyme-linked immunosorbent assay. RESULTS: Cigarette smoke caused substantial inflammatory cell infiltration and led to emphysema. Cigarette smoke exposure promoted the expression of interferon-gamma (IFN)-γ and interleukin (IL)-17A at the messenger ribonucleic acid and protein levels. In addition to Tc1 and Th17 cells, pulmonary and splenic Tc17 cells increased, which was accompanied by the upregulation of cytokines IL-6, transforming growth factor beta (TGF)-ß) and transcriptional factors Stat3 and RAR-related orphan receptor gamma. Compared with untreated mice, γH2AX-positive cells were more frequently observed in mice exposed to cigarette smoke. CONCLUSIONS: Long-term cigarette smoke exposure induced Tc17 cell expansion both locally and distally, which was associated with emphysema and deoxyribonucleic acid damage. As an important source of IL-17A, this T cell subset may be a potential target for chronic obstructive pulmonary disease therapy.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Fumar/efeitos adversos , Células Th17 , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Th17/metabolismo , Células Th17/patologia
13.
Am J Physiol Lung Cell Mol Physiol ; 306(11): L1016-25, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24727585

RESUMO

Autophagy plays a pivotal role in cellular homeostasis and adaptation to adverse environments, although the regulation of this process remains incompletely understood. We have recently observed that caveolin-1 (Cav-1), a major constituent of lipid rafts on plasma membrane, can regulate autophagy in cigarette smoking-induced injury of lung epithelium, although the underlying molecular mechanisms remain incompletely understood. In the present study we found that Cav-1 interacted with and regulated the expression of ATG12-ATG5, an ubiquitin-like conjugation system crucial for autophagosome formation, in lung epithelial Beas-2B cells. Deletion of Cav-1 increased basal and starvation-induced levels of ATG12-ATG5 and autophagy. Biochemical analyses revealed that Cav-1 interacted with ATG5, ATG12, and their active complex ATG12-ATG5. Overexpression of ATG5 or ATG12 increased their interactions with Cav-1, the formation of ATG12-ATG5 conjugate, and the subsequent basal levels of autophagy but resulted in decreased interactions between Cav-1 and another molecule. Knockdown of ATG12 enhanced the ATG5-Cav-1 interaction. Mutation of the Cav-1 binding motif on ATG12 disrupted their interaction and further augmented autophagy. Cav-1 also regulated the expression of ATG16L, another autophagy protein associating with the ATG12-ATG5 conjugate during autophagosome formation. Altogether these studies clearly demonstrate that Cav-1 competitively interacts with the ATG12-ATG5 system to suppress the formation and function of the latter in lung epithelial cells, thereby providing new insights into the molecular mechanisms by which Cav-1 regulates autophagy and suggesting the important function of Cav-1 in certain lung diseases via regulation of autophagy homeostasis.


Assuntos
Células Epiteliais Alveolares/fisiologia , Autofagia , Caveolina 1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caveolina 1/genética , Linhagem Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
14.
Sci Rep ; 3: 2818, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24085258

RESUMO

Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.


Assuntos
Predisposição Genética para Doença , Metaloproteinases da Matriz/genética , Família Multigênica , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Alelos , Heterogeneidade Genética , Genótipo , Humanos , Razão de Chances , Viés de Publicação , Doença Pulmonar Obstrutiva Crônica/metabolismo
15.
Front Med China ; 1(1): 41-5, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24557615

RESUMO

The dendritic cell vaccine is a treatment vaccine with potent clinical applications. Functional cytokines can enhance dendritic cell anti-tumor immune responses. This experiment was conducted to study the effects of bone marrow-derived dendritic cells (BM-DCs) modified with genes encoding murine interleukin-23 (IL-23) on murine pancreatic carcinoma, and effects of the treatment of pancreatic carcinoma with ß-elemene combined with IL-23-modified dendritic cell vaccine. The murine IL-23 cDNA was sub-cloned into a dual-expression vector. DCs were pulsed with tumor cell lysate after being modified wth IL-23. Mice were divided into groups which were injected with IL-23-transduced DC vaccine, non-transduced DC vaccine and sodium respectively. The preventive immune and immunotherapeutic effects of DC vaccines on mice and cytokine release in vivo were then assessed. Results showed inhibitory effects on tumor cells and increased survival time in the experimental group treated with the vaccine combined with ß-elemene. The IL-23 protein apparently increases the antigen presenting ability of DCs. After injection with DC vaccines, IFN-γ production in the treatment group was significantly increased as compared with that in the control group (P<0.01), and IL-4 production was decreased as compared with that in the control group (P<0.05). Tumor size was obviously reduced, and survival time clearly prolonged in the group with ß-elemene combined with DC vaccine, in comparison to the other treatment groups and the control (P<0.01). IL-23-modified dendritic cell vaccines enhance specific Th1-type and cytotoxic T lymphocyte (CTL) responses against pancreatic carcinoma cells, and induce not only auto-immune ability but also preventive immunity against pancreatic carcinoma implanted in mice. ß-elemene has great anti-tumor collaborative functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA