Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879814

RESUMO

Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.

2.
Redox Biol ; 64: 102766, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311396

RESUMO

Catalase is an antioxidant enzyme that catalyzes the rapid conversion of hydrogen peroxide to water and oxygen. Use of catalase as a cancer therapeutic has been proposed to reduce oxidative stress and hypoxia in the tumor microenvironment, both activities which are hypothesized to reduce tumor growth. Furthermore, exposing murine tumors to exogenous catalase was previously reported to have therapeutic benefit. We studied the therapeutic effect of tumor-localized catalases with the aim to further elucidate the mechanism of action. To do this, we engineered two approaches to maximize intratumoral catalase exposure: 1) an injected extracellular catalase with enhanced tumor retention, and 2) tumor cell lines that over-express intracellular catalase. Both approaches were characterized for functionality and tested for therapeutic efficacy and mechanism in 4T1 and CT26 murine syngeneic tumor models. The injected catalase was confirmed to have enzyme activity >30,000 U/mg and was retained at the injection site for more than one week in vivo. The engineered cell lines exhibited increased catalase activity and antioxidant capacity, with catalase over-expression that was maintained for at least one week after gene expression was induced in vivo. We did not observe a significant difference in tumor growth or survival between catalase-treated and untreated mice when either approach was used. Finally, bulk RNA sequencing of tumors was performed, comparing the gene expression of catalase-treated and untreated tumors. Gene expression analysis revealed very few differentially expressed genes as a result of exposure to catalase and notably, we did not observe changes consistent with an altered state of hypoxia or oxidative stress. In conclusion, we observe that sustained intratumoral catalase neither has therapeutic benefit nor triggers significant differential expression of genes associated with the anticipated therapeutic mechanism in the subcutaneous syngeneic tumor models used. Given the lack of effect observed, we propose that further development of catalase as a cancer therapeutic should take these findings into consideration.


Assuntos
Antioxidantes , Neoplasias , Animais , Camundongos , Catalase/genética , Catalase/metabolismo , Antioxidantes/metabolismo , Neoplasias/genética , Estresse Oxidativo , Hipóxia/genética , Peróxido de Hidrogênio/metabolismo , Microambiente Tumoral
3.
Mol Pharm ; 19(11): 3869-3876, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036888

RESUMO

The carboxyl groups of a protein can be esterified by reaction with a diazo compound, 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide. This esterification enables the entry of the protein into the cytosol of a mammalian cell, where the nascent ester groups are hydrolyzed by endogenous esterases. The low aqueous solubility of the ensuing esterified protein is, however, a major practical challenge. Solubility screening revealed that ß-cyclodextrin (ß-CD) is an optimal solubilizing agent for esterified green fluorescent protein (est-GFP). Its addition can increase the recovery of est-GFP by 10-fold. α-CD, γ-CD, and cucurbit-7-uril are less effective excipients. 1H NMR titration experiments revealed that ß-CD encapsulates the hydrophobic tolyl group of ester conjugates with Ka = 321 M-1. Combining l-arginine and sucrose with ß-CD enables the nearly quantitative recovery of est-GFP. Thus, the insolubility of esterified proteins can be overcome with excipients.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Animais , Solubilidade , Excipientes/química , beta-Ciclodextrinas/química , Ésteres/química , Esterificação , Ciclodextrinas/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA