Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 222(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37702712

RESUMO

In mammalian cells, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are cleared out of the ER to the Golgi via a constitutive and a stress-inducible pathway called RESET. From the Golgi, misfolded GPI-APs transiently access the cell surface prior to rapid internalization for lysosomal degradation. What regulates the release of misfolded GPI-APs for RESET during steady-state conditions and how this release is accelerated during ER stress is unknown. Using mutants of prion protein or CD59 as model misfolded GPI-APs, we demonstrate that inducing calnexin degradation or upregulating calnexin-binding glycoprotein expression triggers the release of misfolded GPI-APs for RESET. Conversely, blocking protein synthesis dramatically inhibits the dissociation of misfolded GPI-APs from calnexin and subsequent turnover. We demonstrate an inverse correlation between newly synthesized calnexin substrates and RESET substrates that coimmunoprecipitate with calnexin. These findings implicate competition by newly synthesized substrates for association with calnexin as a key factor in regulating the release of misfolded GPI-APs from calnexin for turnover via the RESET pathway.


Assuntos
Calnexina , Proteínas Ligadas por GPI , Príons , Animais , Calnexina/genética , Membrana Celular , Glicosilfosfatidilinositóis , Mamíferos , Chaperonas Moleculares , Retículo Endoplasmático , Complexo de Golgi , Dobramento de Proteína
2.
iScience ; 25(1): 103717, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072009

RESUMO

Two variants at the APOL1 gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide. Likewise, in orthologous systems, APOL1 lethality was partially abrogated in yeast strains and flies with reduced dosage of genes encoding ER translocon proteins. An inhibitor of ER to Golgi trafficking reduced lethality as well. We suggest that targeting the MSALFL sequence or exon 4 skipping may serve as potential therapeutic approaches to mitigate the risk of CKD caused by APOL1 renal risk variants.

3.
Sci Rep ; 8(1): 8739, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880816

RESUMO

APOL1 risk alleles G1 or G2 are associated with a kidney disease phenotype exclusively in people of recent African ancestry. Here we show that exon 4 encoding a part of the APOL1 signal peptide is constitutively spliced in major APOL1 transcripts expressed in kidney glomerular and tubular cells. We demonstrate that constitutive splicing of exon 4 results from a suboptimal hnRNP A1 binding motif found in exon 4. Accordingly, a robust binding of hnRNP A1 protein to a consensus hnRNP A1 cis-acting element in exon 4 results in almost complete exclusion of exon 4 from the APOL1 minigene transcripts. Blocking the 5' splice site at the exon 4/intron boundary with a specific antisense morpholino oligonucleotide excludes exon 4 from the splicing pattern of endogenous APOL1 transcripts. These transcripts are fully functional and produce APOL1 protein isoform that is not normally detectable in podocytes. Together with our previous data showing no cytotoxicity of overexpressed APOL1 isoform lacking exon 4, we propose that morpholino-induced APOL1 isoform switch may provide a new tool to identify in vivo molecular mechanism(s) by which risk alleles promote or mediate the kidney disease phenotype.


Assuntos
Processamento Alternativo , Apolipoproteína L1/biossíntese , Éxons , Morfolinos/farmacologia , Podócitos/metabolismo , Sítios de Splice de RNA , Apolipoproteína L1/genética , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Podócitos/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética
4.
Am J Physiol Cell Physiol ; 309(1): C22-37, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25924622

RESUMO

The apolipoprotein L1 (APOL1) gene (APOL1) product is toxic to kidney cells, and its G1 and G2 alleles are strongly associated with increased risk for kidney disease progression in African Americans. Variable penetrance of the G1 and G2 risk alleles highlights the significance of additional factors that trigger or modify the progression of disease. In this regard, the effect of alternative splicing in the absence or presence of G1 or G2 alleles is unknown. In this study we investigated whether alternative splicing of non-G1, non-G2 APOL1 (APOL1 G0) affects its biological activity. Among seven APOL1 exons, exons 2 and 4 are differentially expressed in major transcripts. We found that, in contrast to APOL1 splice variants B3 or C, variants A and B1 demonstrate strong toxicity in human embryonic kidney (HEK293T) cells. Subsequently, we established that exon 4 is a major determinant of toxicity of variants A and B1 and that extracellular release of these variants is dispensable for their cytotoxicity. Although only variants A and B1 induced nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, exon 4-positive and -negative APOL1 variants stimulated perinuclear accumulation of unprocessed autophagosomes. Knockdown of endogenous TFEB did not attenuate APOL1 cytotoxicity, indicating that nuclear translocation of TFEB is dispensable for APOL1 toxicity. Our findings that a human podocyte cell line expresses exon 4-positive and -negative APOL1 transcripts suggest that these variants may play a differential role in podocyte pathology. In summary, we have identified exon 4 as a major determinant of APOL1 G0 cytotoxicity.


Assuntos
Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Autofagia , Éxons , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Podócitos/metabolismo , Transporte Ativo do Núcleo Celular , Processamento Alternativo , Sequência de Aminoácidos , Apolipoproteína L1 , Apolipoproteínas/química , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lipoproteínas HDL/química , Dados de Sequência Molecular , Podócitos/patologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA