Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Neuropeptides ; 105: 102427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579490

RESUMO

Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Peptídeo YY , Humanos , Animais , Peptídeo YY/metabolismo , Peptídeo YY/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Fragmentos de Peptídeos/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
2.
J Comp Neurol ; 532(2): e25588, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335050

RESUMO

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Assuntos
Cocaína , Hormônios Hipotalâmicos , Animais , Feminino , Masculino , Camundongos , Anfetaminas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
3.
Intern Med J ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064543

RESUMO

BACKGROUND: Sickle cell disease (SCD) is the most common monogenic disorder worldwide. In deoxygenated conditions, the altered beta chain (haemoglobin S [HbS]) polymerises and distorts the erythrocyte, resulting in pain crises, vasculopathy and end-organ damage. Clinical complications of SCD cause substantial morbidity, and therapy demands expertise and resources. Optimising care for patients and planning resource allocation for the future requires an understanding of the disease in the Australian population. The Australian Haemoglobinopathy Registry (HbR) is a collaborative initiative of specialist centres collating and analysing data on patients with haemoglobin disorders. AIMS: To provide a snapshot of SCD in Australia over a 12-month period based on data from the HbR. METHODS: Patients with a clinically significant sickling disorder across 12 clinical sites were included for analysis. Data include demographic and diagnostic details, as well as details of the clinical management of the condition over a 12-month period. RESULTS: Data on 359 SCD patients demonstrate a shift in the demographic of patients in Australia, with a growing proportion of sub-Saharan African ethnicities associated with the HbSS genotype. Acute and chronic complications are common, and patients require significant outpatient and inpatient support. Prevalence of disease complications and therapeutic trends are in keeping with other high-income countries. CONCLUSIONS: This study provides the first national picture of SCD in Australia, describing the characteristics and needs of SCD patients, elucidating demand for current and novel therapy and facilitating the planning of services for this vulnerable population.

4.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541198

RESUMO

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidade , Virulência , Transdução Genética
5.
J Neuroendocrinol ; 35(1): e13222, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529144

RESUMO

Melanin-concentrating hormone (MCH) neurons within the hypothalamus are heterogeneous and can coexpress additional neuropeptides and transmitters. The majority of MCH neurons express vesicular transporters to package glutamate for synaptic release, and MCH neurons can directly innervate downstream neurons via glutamate release. Although glutamatergic signalling from MCH neurons may support physiological and behavioural roles that are independent of MCH (e.g., in glucose homeostasis and nutrient-sensing), it can also mediate similar roles to MCH in the regulation of energy balance. In addition to energy balance, the MCH system has also been implicated in mood disorders, as MCH receptor antagonists have anxiolytic and anti-depressive effects. However, the contribution of glutamatergic signalling from MCH neurons to mood-related functions have not been investigated. We crossed Mch-cre mice with floxed-Vglut2 mice to delete the expression of the vesicular glutamate transporter 2 (Vglut2) and disable glutamatergic signalling specifically from MCH neurons. The resulting Mch-Vglut2-KO mice showed Vglut2 deletion from over 75% of MCH neurons, and although we did not observe changes in depressive-like behaviours, we found that Mch-Vglut2-KO mice displayed anxiety-like behaviours. Mch-Vglut2-KO mice showed reduced exploratory activity when placed in a new cage and were quicker to consume food placed in the centre of a novel open arena. These findings showed that Vglut2 deletion from MCH neurons resulted in anxiolytic actions and suggested that the anxiogenic effects of glutamate are similar to those of the MCH peptide. Taken together, these findings suggest that glutamate and MCH may synergize to regulate and promote anxiety-like behaviour.


Assuntos
Ansiolíticos , Camundongos , Animais , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ansiedade
6.
Intern Med J ; 53(1): 61-67, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142758

RESUMO

BACKGROUND: The goal of therapy in type 1 diabetes (T1D) is to achieve optimal glycaemic targets and reduce complications. Robust data representing glycaemic outcomes across the lifespan are lacking in Australasia. AIMS: To examine contemporary glycaemic outcomes and rate of use of diabetes technologies in Australasian people with T1D. METHODS: Cross-sectional analysis of de-identified data from 18 diabetes centres maintained in the Australasian Diabetes Data Network registry during 2019. Glycaemia was measured using glycated haemoglobin (HbA1c). The proportion of people with T1D achieving the international HbA1c target of <53 mmol/mol (7%) was calculated. Rates of continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) use were determined. RESULTS: A total of 7988 individuals with T1D with 30 575 visits were recorded in the registry. The median (interquartile range) age was 15.3 (10.0) years and diabetes duration was 5.7 (9.4) years with 49% on multiple daily injections (MDI) and 36% on CSII. The mean HbA1c for the whole cohort was 66 mmol/mol (8.2%). HbA1c increased with age, from 60 mmol/mol (7.6%) in children <10 years, increasing during adolescence and peaking at 73 mmol/mol (8.8%) in the 20-25 years age group. The HbA1c target of <53 mmol/mol (7%) was met in 18% of children and 13% of adults. HbA1c was lower on CSII as compared with those on MDI (P < 0.0001). CONCLUSIONS: Only a minority of children and adults achieve the recommended glycaemic goals despite access to specialist care in major diabetes centres. There is a need to identify factors that improve glycaemic outcomes.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Humanos , Criança , Adulto , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/epidemiologia , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Automonitorização da Glicemia , Estudos Transversais , Glicemia , Sistemas de Infusão de Insulina , Insulina/uso terapêutico
7.
PLoS One ; 17(12): e0279468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584182

RESUMO

The COVID-19 pandemic has been linked with increased reports of depression, anxiety, and stress. Stay-at-home directives during the pandemic-imposed lifestyle changes, including eating and sedentary behaviors that can further undermine mental health outcomes. Physical activity is a vital component for metabolic health, as well as for mental health by serving as an active coping strategy to manage stress and promote resilience. Global reports of increased sedentary leisure behaviors have been associated with feelings of depression and anxiety, but it unclear whether the relationship between physical activity and depression or anxiety persists over time. In this longitudinal study, we investigated (i) whether physical activity at the onset of the pandemic was related to feelings of depression or anxiety over time and (ii) whether this relationship was mediated by stress appraisals during the pandemic. We surveyed 319 adults living in Canada or the United States to assess physical activity, stress appraisals, and mental health outcomes at two time points over a 6-month period. We found a reduction in leisure-time physical activity that was linked to subsequent feelings of depression. Furthermore, individuals with lower levels of physical activity were more likely to appraise their COVID-19 situation to be uncontrollable at pandemic onset and as the pandemic continued. Stress appraisals of threat and uncontrollability were also positively related to feelings of depression. Modelling these three factors together showed that appraising a situation as uncontrollable mediated the relationship between initial physical activity and subsequent depressive feelings. Although correlational, these data highlight the protective role of leisure-time physical activity against worsened mental health outcomes during periods of prolonged stress.


Assuntos
COVID-19 , Pandemias , Adulto , Humanos , Estudos Longitudinais , COVID-19/epidemiologia , Exercício Físico , Ansiedade/epidemiologia , Avaliação de Resultados em Cuidados de Saúde , Depressão/epidemiologia
9.
J Comp Neurol ; 530(10): 1634-1657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35143049

RESUMO

Beta-klotho (KLB) is a coreceptor required for endocrine fibroblast growth factor (FGF) 15/19 and FGF21 signaling in the brain. Klb is prominent within the hypothalamus, which is consistent with its metabolic functions, but diverse roles for Klb are now emerging. Central Klb expression is low but discrete and may govern FGF-targeted sites. However, given its low expression, it is unclear if Klb mRNA is more widespread. We performed in situ hybridization to label Klb mRNA to generate spatial maps capturing the distribution and levels of Klb within the mouse hypothalamus, hippocampal region, subiculum, and amygdala. Semiquantitative analysis revealed that Klb-labeled cells may express low, medium, or high levels of Klb mRNA. Hypothalamic Klb hybridization was heterogeneous and varied rostrocaudally within the same region. Most Klb-labeled cells were found in the lateral hypothalamic zone, but the periventricular hypothalamic region, including the suprachiasmatic nucleus, contained the greatest proportion of cells expressing medium or high Klb levels. We also found heterogeneous Klb hybridization in the amygdala and subiculum, where Klb was especially distinct within the central amygdalar nucleus and ventral subiculum, respectively. By contrast, Klb-labeled cells in the hippocampal region only expressed low levels of Klb and were typically found in the pyramidal layer of Ammon's horn or dentate gyrus. The Klb-labeled regions identified in this study are consistent with reported roles of Klb in metabolism, taste preference, and neuroprotection. However, additional identified sites, including within the hypothalamus and amygdala, may suggest novel roles for FGF15/19 or FGF21 signaling.


Assuntos
Tonsila do Cerebelo , Hipocampo , Animais , Córtex Cerebral , Hipotálamo , Camundongos , RNA Mensageiro
11.
Diabetes Care ; 45(2): 391-397, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872983

RESUMO

OBJECTIVE: Continuous glucose monitoring (CGM) is increasingly used in type 1 diabetes management; however, funding models vary. This study determined the uptake rate and glycemic outcomes following a change in national health policy to introduce universal subsidized CGM funding for people with type 1 diabetes aged <21 years. RESEARCH DESIGN AND METHODS: Longitudinal data from 12 months before the subsidy until 24 months after were analyzed. Measures and outcomes included age, diabetes duration, HbA1c, episodes of diabetic ketoacidosis and severe hypoglycemia, insulin regimen, CGM uptake, and percentage CGM use. Two data sources were used: the Australasian Diabetes Database Network (ADDN) registry (a prospective diabetes database) and the National Diabetes Service Scheme (NDSS) registry that includes almost all individuals with type 1 diabetes nationally. RESULTS: CGM uptake increased from 5% presubsidy to 79% after 2 years. After CGM introduction, the odds ratio (OR) of achieving the HbA1c target of <7.0% improved at 12 months (OR 2.5, P < 0.001) and was maintained at 24 months (OR 2.3, P < 0.001). The OR for suboptimal glycemic control (HbA1c ≥9.0%) decreased to 0.34 (P < 0.001) at 24 months. Of CGM users, 65% used CGM >75% of time, and had a lower HbA1c at 24 months compared with those with usage <25% (7.8 ± 1.3% vs. 8.6 ± 1.8%, respectively, P < 0.001). Diabetic ketoacidosis was also reduced in this group (incidence rate ratio 0.49, 95% CI 0.33-0.74, P < 0.001). CONCLUSIONS: Following the national subsidy, CGM use was high and associated with sustained improvement in glycemic control. This information will inform economic analyses and future policy and serve as a model of evaluation diabetes technologies.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Estudos Prospectivos , Adulto Jovem
12.
Diabetes Care ; 45(12): 2918-2925, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749868

RESUMO

OBJECTIVE: The relationship between diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes and long-term glycemic control varies between studies. We aimed, firstly, to characterize the association of DKA and its severity with long-term HbA1c in a large contemporary cohort, and secondly, to identify other independent determinants of long-term HbA1c. RESEARCH DESIGN AND METHODS: Participants were 7,961 children and young adults diagnosed with type 1 diabetes by age 30 years from 2000 to 2019 and followed prospectively in the Australasian Diabetes Data Network (ADDN) until 31 December 2020. Linear mixed-effect models related variables to HbA1c. RESULTS: DKA at diagnosis was present in 2,647 participants (33.2%). Over a median 5.6 (interquartile range 3.2, 9.4) years of follow-up, participants with severe, but not moderate or mild, DKA at diagnosis had a higher mean HbA1c (+0.23%, 95% CI 0.11,0.28; [+2.5 mmol/mol, 95% CI 1.4,3.6]; P < 0.001) compared with those without DKA. Use of continuous subcutaneous insulin infusion (CSII) was independently associated with a lower HbA1c (-0.28%, 95% CI -0.31, -0.25; [-3.1 mmol/mol, 95% CI -3.4, -2.8]; P < 0.001) than multiple daily injections, and CSII use interacted with severe DKA to lower predicted HbA1c. Indigenous status was associated with higher HbA1c (+1.37%, 95% CI 1.15, 1.59; [+15.0 mmol/mol, 95% CI 12.6, 17.4]; P < 0.001), as was residing in postcodes of lower socioeconomic status (most vs. least disadvantaged quintile +0.43%, 95% CI 0.34, 0.52; [+4.7 mmol/mol, 95% CI 3.4, 5.6]; P < 0.001). CONCLUSIONS: Severe, but not mild or moderate, DKA at diagnosis was associated with a marginally higher HbA1c over time, an effect that was modified by use of CSII. Indigenous status and lower socioeconomic status were independently associated with higher long-term HbA1c.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Hemoglobinas Glicadas , Adulto , Criança , Humanos , Adulto Jovem , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Cetoacidose Diabética/diagnóstico , Cetoacidose Diabética/epidemiologia , Cetoacidose Diabética/etiologia , Hemoglobinas Glicadas/análise , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Injeções , Insulina/administração & dosagem , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Australásia/epidemiologia , Baixo Nível Socioeconômico , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/estatística & dados numéricos
13.
PLoS Negl Trop Dis ; 15(9): e0009730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492012

RESUMO

In recent years, the human gut microbiome has been recognised to play a pivotal role in the health of the host. Intestinal homeostasis relies on this intricate and complex relationship between the gut microbiota and the human host. While much effort and attention has been placed on the characterization of the organisms that inhabit the gut microbiome, the complex molecular cross-talk between the microbiota could also exert an effect on gastrointestinal conditions. Blastocystis is a single-cell eukaryotic parasite of emerging interest, as its beneficial or pathogenic role in the microbiota has been a subject of contention even to-date. In this study, we assessed the function of the Blastocystis tryptophanase gene (BhTnaA), which was acquired by horizontal gene transfer and likely to be of bacterial origin within Blastocystis. Bioinformatic analysis and phylogenetic reconstruction revealed distinct divergence of BhTnaA versus known bacterial homologs. Despite sharing high homology with the E. coli tryptophanase gene, we show that Blastocystis does not readily convert tryptophan into indole. Instead, BhTnaA preferentially catalyzes the conversion of indole to tryptophan. We also show a direct link between E. coli and Blastocystis tryptophan metabolism: In the presence of E. coli, Blastocystis ST7 is less able to metabolise indole to tryptophan. This study examines the potential for functional variation in horizontally-acquired genes relative to their canonical counterparts, and identifies Blastocystis as a possible producer of tryptophan within the gut.


Assuntos
Blastocystis/enzimologia , Proteínas de Protozoários/metabolismo , Triptofanase/metabolismo , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Blastocystis/genética , Blastocystis/metabolismo , Transferência Genética Horizontal , Humanos , Indóis/metabolismo , Cinética , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Triptofano/metabolismo , Triptofanase/química , Triptofanase/genética
14.
Sci Rep ; 11(1): 19174, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580387

RESUMO

Current classes of cancer therapeutics have negative side effects stemming from off-target cytotoxicity. One way to avoid this would be to use a drug delivery system decorated with targeting moieties, such as an aptamer, if a targeted aptamer is available. In this study, aptamers were selected against acute myeloid leukemia (AML) cells expressing the MLL-AF9 oncogene through systematic evolution of ligands by exponential enrichment (SELEX). Twelve rounds of SELEX, including two counter selections against fibroblast cells, were completed. Aptamer pools were sequenced, and three candidate sequences were identified. These sequences consisted of two 23-base primer regions flanking a 30-base central domain. Binding studies were performed using flow cytometry, and the lead sequence had a binding constant of 37.5 + / - 2.5 nM to AML cells, while displaying no binding to fibroblast or umbilical cord blood cells at 200 nM. A truncation study of the lead sequence was done using nine shortened sequences, and showed the 5' primer was not important for binding. The lead sequence was tested against seven AML patient cultures, and five cultures showed binding at 200 nM. In summary, a DNA aptamer specific to AML cells was developed and characterized for future drug-aptamer conjugates.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Linhagem Celular Tumoral , Células Cultivadas , Sangue Fetal , Humanos , Ligantes
15.
Neurosci Biobehav Rev ; 128: 346-357, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182019

RESUMO

Fructose consumption has been linked with metabolic syndrome and obesity. Fructose-based sweeteners like high fructose corn syrup taste sweeter, improve food palatability, and are increasingly prevalent in our diet. The increase in fructose consumption precedes the rise in obesity and is a contributing driver to the obesity epidemic worldwide. The role of dietary fructose in obesity can be multifactorial by promoting visceral adiposity, hypertension, and insulin resistance. Interestingly, one emergent finding from human and animal studies is that dietary fructose promotes overfeeding. As the brain is a critical regulator of food intake, we reviewed the evidence that fructose can act in the brain and elucidated the major brain systems underlying fructose-induced overfeeding. We found that fructose acts on multiple interdependent brain systems to increase orexigenic drive and the incentive salience of food while decreasing the latency between food bouts and reducing cognitive control to disinhibit feeding. We concluded that the collective actions of fructose may promote feeding behavior by producing a hunger-like state in the brain.


Assuntos
Frutose , Síndrome Metabólica , Animais , Dieta , Humanos , Obesidade , Edulcorantes
16.
J Clin Endocrinol Metab ; 106(1): 133-142, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120421

RESUMO

CONTEXT: Cardiovascular disease occurs prematurely in type 1 diabetes. The additional risk of overweight is not well characterized. OBJECTIVE: The primary aim was to measure the impact of body mass index (BMI) in youth with type 1 diabetes on cardiovascular risk factors. The secondary aim was to identify other determinants of cardiovascular risk. DESIGN: Observational longitudinal study of 7061 youth with type 1 diabetes followed for median 7.3 (interquartile range [IQR] 4-11) years over 41 (IQR 29-56) visits until March 2019. SETTING: 15 tertiary care diabetes centers in the Australasian Diabetes Data Network.Participants were aged 2 to 25 years at baseline, with at least 2 measurements of BMI and blood pressure. MAIN OUTCOME MEASURE: Standardized systolic and diastolic blood pressure scores and non-high-density lipoprotein (HDL) cholesterol were co-primary outcomes. Urinary albumin/creatinine ratio was the secondary outcome. RESULTS: BMI z-score related independently to standardized blood pressure z- scores and non-HDL cholesterol. An increase in 1 BMI z-score related to an average increase in systolic/diastolic blood pressure of 3.8/1.4 mmHg and an increase in non-HDL cholesterol (coefficient + 0.16 mmol/L, 95% confidence interval [CI], 0.13-0.18; P < 0.001) and in low-density lipoprotein (LDL) cholesterol. Females had higher blood pressure z-scores, higher non-HDL and LDL cholesterol, and higher urinary albumin/creatinine than males. Indigenous youth had markedly higher urinary albumin/creatinine (coefficient + 2.15 mg/mmol, 95% CI, 1.27-3.03; P < 0.001) and higher non-HDL cholesterol than non-Indigenous youth. Continuous subcutaneous insulin infusion was associated independently with lower non-HDL cholesterol and lower urinary albumin/creatinine. CONCLUSIONS: BMI had a modest independent effect on cardiovascular risk. Females and Indigenous Australians in particular had a more adverse risk profile.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Fatores de Risco de Doenças Cardíacas , Adolescente , Adulto , Fatores Etários , Australásia/epidemiologia , Índice de Massa Corporal , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Criança , Pré-Escolar , Redes Comunitárias , Bases de Dados Factuais , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Angiopatias Diabéticas/diagnóstico , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/etiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco , Adulto Jovem
17.
Nutrients ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322367

RESUMO

To limit the spread of coronavirus disease 2019 (COVID-19), many individuals were instructed to stay at home, and teleworking became commonplace. Meanwhile, many others were laid off or worked reduced hours, and some front line workers were required to work longer hours. Concurrently, a surge in reports of "pandemic baking" suggested a cascade effect on eating behaviors, which may be an inadvertent strategy to cope with stress. We conducted an online survey of people living in Canada or the United States (N = 680) to assess how employment change may have been experienced as stressful and linked to a shift in food choices. Regression models suggested that reduced hours and being laid off were associated with greater stress appraisals, avoidant- and emotion-focused coping responses, and negative affect. In turn, negative affect was associated with eating to cope and unhealthy snack choices, like salty or sweet treats. Our study emphasizes that under stressful conditions, such as those experienced during the COVID-19 pandemic, some coping strategies may contribute to the greater vulnerability to downstream effects, particularly those relating to eating choices and nutritional balances.


Assuntos
Adaptação Psicológica , COVID-19 , Saúde Mental , Pandemias , SARS-CoV-2 , Estresse Psicológico , Adulto , COVID-19/epidemiologia , COVID-19/psicologia , Feminino , Humanos , Masculino , Estresse Psicológico/epidemiologia , Estresse Psicológico/patologia
18.
Mol Metab ; 42: 101104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075544

RESUMO

OBJECTIVE: Exposure to persistent organic pollutants is consistently associated with increased diabetes risk in humans. We investigated the short- and long-term impact of transient low-dose dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) exposure during pregnancy and lactation on glucose homeostasis and beta cell function in female mice, including their response to a metabolic stressor later in life. METHODS: Female mice were injected with either corn oil (CO; vehicle control) or 20 ng/kg/d TCDD 2x/week throughout mating, pregnancy and lactation, and then tracked for 6-10 weeks after chemical exposure stopped. A subset of CO- and TCDD-exposed dams was then transferred to a 45% high-fat diet (HFD) or remained on a standard chow diet for an additional 11 weeks to assess the long-term effects of TCDD on adaptability to a metabolic stressor. To summarize, female mice were transiently exposed to TCDD and then subsequently tracked beyond when TCDD had been excreted to identify lasting metabolic effects of TCDD exposure. RESULTS: TCDD-exposed dams were hypoglycemic at birth but otherwise had normal glucose homeostasis during and post-TCDD exposure. However, TCDD-exposed dams on a chow diet were modestly heavier than controls starting 5 weeks after the last TCDD injection, and their weight gain accelerated after transitioning to a HFD. TCDD-exposed dams also had an accelerated onset of hyperglycemia, impaired glucose-induced plasma insulin levels, reduced islet size, increased MAFA-ve beta cells, and increased proinsulin accumulation following HFD feeding compared to controls. Overall, our study demonstrates that low-dose TCDD exposure during pregnancy has minimal effects on metabolism during the period of active exposure, but has detrimental long-term effects on metabolic adaptability to HFD feeding. CONCLUSIONS: Our study suggests that transient low-dose TCDD exposure in female mice impairs metabolic adaptability to HFD feeding, demonstrating that dioxin exposure may be a contributing factor to obesity and diabetes pathogenesis in females.


Assuntos
Dioxinas/efeitos adversos , Obesidade/metabolismo , Animais , Diabetes Mellitus , Dieta Hiperlipídica , Dioxinas/metabolismo , Dioxinas/farmacologia , Suscetibilidade a Doenças/induzido quimicamente , Feminino , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Lactação/efeitos dos fármacos , Lactação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
19.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530066

RESUMO

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Receptores de Somatostatina/biossíntese , Caracteres Sexuais , Animais , Cílios/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de Somatostatina/genética
20.
J Comp Neurol ; 528(11): 1833-1855, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31950494

RESUMO

The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine ß-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.


Assuntos
Hipotálamo/citologia , Neurônios/citologia , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA