Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Med ; 25(3): 529, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30670876

RESUMO

In the version of this article originally published, the figure callout in this sentence was incorrect: "Furthermore, in S1P1-KI mice themselves, whereas PD-1 blockade was ineffectual as monotherapy, the effects of 4-1BB agonism and checkpoint blockade proved additive, with the combination prolonging median survival and producing a 50% long-term survival rate (Fig. 6f)." The callout should have been to Supplementary Fig. 6b. The error has been corrected in the PDF and HTML versions of the article.

2.
Nat Med ; 24(9): 1459-1468, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104766

RESUMO

T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell-deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell-activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.


Assuntos
Medula Óssea/imunologia , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Encefálicas/patologia , Endocitose , Glioblastoma/patologia , Humanos , Tecido Linfoide/patologia , Linfopenia/imunologia , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Baço/patologia
3.
Oncoimmunology ; 3(1): e27218, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24575383

RESUMO

We have recently described a new murine model of glioblastoma, generated by the implantation of syngeneic glioblastoma stem cells into immunocompetent mice, that recapitulates the salient histopathological and immunological features of the human disease. We employed this model to demonstrate the multifaceted activity of an oncolytic herpes simplex virus genetically modified to express interleukin-12, G47∆-IL12.

4.
Neoplasia ; 15(6): 591-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730207

RESUMO

Oncolytic herpes simplex virus (oHSV) can potentially spread throughout the tumor, reach isolated infiltrating cells, kill them, and deliver anticancer agents. However, the host responds to oHSV by inducing intratumoral infiltration of macrophages that can engulf the virus, limiting the potential of this therapeutic strategy. Hypervascularity is a pathognomonic feature of glioblastoma (GBM) and is a promising therapeutic target. Antiangiogenic treatments have multiple benefits, including the capacity to increase oHSV efficacy by suppressing macrophage extravasation and infiltration into the tumor. Angiostatin is an antiangiogenic polypeptide, and interleukin-12 (IL-12) is an immunostimulatory cytokine with strong antiangiogenic effects. Clinical use of each has been limited by delivery issues and systemic toxicity. We tested a combination treatment strategy using oHSVs expressing angiostatin (G47Δ-mAngio) and IL-12 (G47Δ-mIL12) in two orthotopic human GBM models. Intratumoral injection of G47Δ-mAngio and G47Δ-mIL12 in mice bearing intracranial U87 or tumors derived from glioblastoma stem cells significantly prolonged survival compared to each armed oHSV alone. This was associated with increased antiangiogenesis and virus spread and decreased macrophages. These data support the paradigm of using oHSV expressing different antiangiogenic agents and show for the first time that oHSVs expressing angiostatin and IL-12 can improve efficacy in human GBM models.


Assuntos
Inibidores da Angiogênese/farmacologia , Angiostatinas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Interleucina-12/farmacologia , Vírus Oncolíticos/genética , Simplexvirus/genética , Angiostatinas/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/metabolismo , Glioblastoma/virologia , Humanos , Injeções Intralesionais , Interleucina-12/genética , Camundongos , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 110(29): 12006-11, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23754388

RESUMO

Glioblastoma (World Health Organization grade IV) is an aggressive adult brain tumor that is inevitably fatal despite surgery, radiation, and chemotherapy. Treatment failures are attributed to combinations of cellular heterogeneity, including a subpopulation of often-resistant cancer stem cells, aberrant vasculature, and noteworthy immune suppression. Current preclinical models and treatment strategies do not incorporate or address all these features satisfactorily. Herein, we describe a murine glioblastoma stem cell (GSC) model that recapitulates tumor heterogeneity, invasiveness, vascularity, and immunosuppressive microenvironment in syngeneic immunocompetent mice and should prove useful for a range of therapeutic studies. Using this model, we tested a genetically engineered oncolytic herpes simplex virus that is armed with an immunomodulatory cytokine, interleukin 12 (G47-mIL12). G47Δ-mIL12 infects and replicates similarly to its unarmed oncolytic herpes simplex virus counterpart in mouse 005 GSCs in vitro, whereas in vivo, it significantly enhances survival in syngeneic mice bearing intracerebral 005 tumors. Mechanistically, G47-mIL12 targets not only GSCs but also increases IFN-γ release, inhibits angiogenesis, and reduces the number of regulatory T cells in the tumor. The increased efficacy is dependent upon T cells, but not natural killer cells. Taken together, our findings demonstrate that G47Δ-mIL12 provides a multifaceted approach to targeting GSCs, tumor microenvironment, and the immune system, with resultant therapeutic benefit in a stringent glioblastoma model.


Assuntos
Modelos Animais de Doenças , Glioblastoma/terapia , Imunoterapia/métodos , Interleucina-12/metabolismo , Terapia Viral Oncolítica/métodos , Simplexvirus/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glioblastoma/virologia , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas
6.
Clin Cancer Res ; 17(23): 7383-93, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21976549

RESUMO

PURPOSE: Glioblastoma (GBM) inevitably recurs despite surgery, radiation, and chemotherapy. A subpopulation of tumor cells, GBM stem cells (GSC), has been implicated in this recurrence. The chemotherapeutic agent etoposide is generally reserved for treating recurrent tumors; however, its effectiveness is limited due to acute and cumulative toxicities to normal tissues. We investigate a novel combinatorial approach of low-dose etoposide with an oncolytic HSV to enhance antitumor activity and limit drug toxicity. EXPERIMENTAL DESIGN: In vitro, human GBM cell lines and GSCs were treated with etoposide alone, oncolytic herpes simplex virus (oHSV) G47Δ alone, or the combination. Cytotoxic interactions were analyzed using the Chou-Talalay method, and changes in caspase-dependent apoptosis and cell cycle were determined. In vivo, the most etoposide-resistant human GSC, BT74, was implanted intracranially and treated with either treatment alone or the combination. Analysis included effects on survival, therapy-associated adverse events, and histologic detection of apoptosis. RESULTS: GSCs varied in their sensitivity to etoposide by over 50-fold in vitro, whereas their sensitivity to G47Δ was similar. Combining G47Δ with low-dose etoposide was moderately synergistic in GSCs and GBM cell lines. This combination did not enhance virus replication, but significantly increased apoptosis. In vivo, the combination of a single cycle of low-dose etoposide with G47Δ significantly extended survival of mice-bearing etoposide-insensitive intracranial human GSC-derived tumors. CONCLUSIONS: The combination of low-dose etoposide with G47Δ increases survival of mice-bearing intracranial human GSC-derived tumors without adverse side effects. These results establish this as a promising combination strategy to treat resistant and recurrent GBM.


Assuntos
Neoplasias Encefálicas/terapia , Etoposídeo/administração & dosagem , Glioblastoma/terapia , Terapia Viral Oncolítica/métodos , Inibidores da Topoisomerase I/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Etoposídeo/uso terapêutico , Glioblastoma/tratamento farmacológico , Humanos , Irinotecano , Camundongos , Camundongos Nus , Células-Tronco Neurais/patologia , Vírus Oncolíticos/metabolismo , Simplexvirus/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Neurochem ; 106(5): 1998-2014, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18518929

RESUMO

The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occur during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.


Assuntos
Membrana Celular/metabolismo , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Tamanho Celular , Eletrólitos/metabolismo , Homeostase/fisiologia , Humanos , Concentração Osmolar
8.
J Pharmacol Exp Ther ; 324(2): 648-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17991810

RESUMO

The ability of cholesterol to modulate receptor-mediated increases in the volume-dependent release of the organic osmolyte, taurine, has been examined. Depletion of cholesterol from SH-SY5Y neuroblastoma by preincubation of the cells with 5 mM methyl-beta-cyclodextrin (CD) for 10 min resulted in a 40 to 50% reduction in cholesterol and an enhancement of the ability of proteinase-activated receptor (PAR) 1, muscarinic cholinergic receptor (mAChR), and sphingosine 1-phosphate receptor to stimulate taurine efflux, when monitored under hypoosmotic conditions. Basal (swelling-induced) release of taurine was also enhanced by cholesterol depletion, but less markedly. Both basal- and receptor-mediated increases in taurine efflux were mediated via a volume-sensitive organic osmolyte and anion channel in control and cholesterol-depleted cells. Studies with the PAR-1 and mAChR receptor subtypes indicated that the stimulatory effect of CD pretreatment could be reversed by incubation of the cells with either CD/cholesterol or CD/5-cholesten-3alpha-ol donor complexes and that cholesterol depletion increased agonist efficacy, but not potency. The ability of cholesterol depletion to promote the PAR-1 receptor-mediated stimulation of osmolyte release was most pronounced under conditions of isotonicity or mild hypotonicity. In contrast to CD pretreatment, preincubation of the cells with cholesterol oxidase, a condition under which lipid microdomains are also disrupted, had no effect on either basal- or receptor-stimulated taurine efflux. Taken together, the results suggest that cholesterol regulates receptor-mediated osmolyte release via its effects on the biophysical properties of the plasma membrane, rather than its presence in lipid microdomains.


Assuntos
Tamanho Celular , Colesterol/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptor PAR-1/metabolismo , Taurina/metabolismo , Linhagem Celular Tumoral , Humanos
9.
J Pharmacol Exp Ther ; 320(3): 1068-77, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17148779

RESUMO

The basal (swelling-induced) and receptor-stimulated effluxes of (125)I(-) and taurine have been monitored to determine whether these two osmolytes are released from human SH-SY5Y cells under hypotonic conditions via common or distinct mechanisms. Under basal conditions, both (125)I(-) (used as a tracer for Cl(-)) and taurine were released from the cells in a volume-dependent manner. The addition of thrombin, mediated via the proteinase-activated receptor-1 (PAR-1) subtype, significantly enhanced the release of both (125)I(-) and taurine (3-6-fold) and also increased the threshold osmolarity for efflux of these osmolytes ("set-point") from 200 to 290 mOsM. Inclusion of a variety of broad-spectrum anion channel blockers and of 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid attenuated the release of both (125)I(-) and taurine under basal and receptor-stimulated conditions. Basal release of (125)I(-) and taurine was independent of Ca(2+) or the activity of protein kinase C (PKC). However, although PAR-1-stimulated taurine efflux was attenuated by either a depletion of intracellular Ca(2+) or inhibition of PKC by chelerythrine, the enhanced release of (125)I(-) was independent of both parameters. Stimulated efflux of (125)I(-) after activation of muscarinic cholinergic receptors was also markedly less dependent on Ca(2+) availability and PKC activity than that observed for taurine release. These results indicate that, although the osmosensitive release of these two osmolytes from SH-SY5Y cells may occur via pharmacologically similar membrane channels, the receptor-mediated release of (125)I(-) and taurine is differentially regulated by PKC activity and Ca(2+) availability.


Assuntos
Cálcio/metabolismo , Iodetos/metabolismo , Proteína Quinase C/metabolismo , Receptor PAR-1/metabolismo , Taurina/metabolismo , Alcaloides/farmacologia , Benzofenantridinas/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Radioisótopos do Iodo , Neuroblastoma , Concentração Osmolar , Proteína Quinase C/antagonistas & inibidores , Trombina/farmacologia
10.
J Pharmacol Exp Ther ; 315(2): 755-63, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16051696

RESUMO

The ability of subnanomolar concentrations of thrombin to protect both neurons and glia from ischemia and other metabolic insults has recently been reported. In this study, we demonstrate an additional neuroprotective property of thrombin; its ability to promote the release of the organic osmolyte, taurine, in response to hypoosmotic stress. Incubation of human 1321N1 astrocytoma cells with hypo-osmolar buffers (320-227 mOsM) resulted in a time-dependent release of taurine. Inclusion of thrombin (EC(50) = 60 pM) resulted in a marked increase in taurine efflux that, although evident under isotonic conditions (340 mOsM), was maximal at an osmolarity of 270 mOsM (3-4-fold stimulation). Thrombin-stimulated taurine efflux was dependent upon its protease activity and could be mimicked by addition of the peptide SFLLRN, a proteinase activated receptor-1 (PAR-1) subtype-specific ligand. Inclusion of anion channel blockers known to inhibit the volume-sensitive organic osmolyte anion channel attenuated thrombin-stimulated taurine release. Depletion of intracellular Ca(2+) with either 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or thapsigargin, or alternatively, inhibition of protein kinase C (PKC) with bisindolylmaleimide or chelerythrine resulted in a 30 to 50% inhibition of thrombin-stimulated taurine efflux. Under conditions in which intracellular Ca(2+) was depleted and PKC activity inhibited, thrombin-stimulated taurine efflux was reduced by >85%. The results indicate that activation of PAR-1 receptors by thrombin facilitates the ability of 1321N1 astrocytoma cells to release osmolytes in response to a reduction in osmolarity via a mechanism that is dependent on intracellular Ca(2+) and PKC activity.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Hemostáticos/farmacologia , Taurina/metabolismo , Trombina/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ativação Enzimática/fisiologia , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Concentração Osmolar , Toxina Pertussis/farmacologia , Fosfatidilinositóis/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor PAR-1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA