RESUMO
Monocytes and macrophages are central to host defense but also contribute to inflammation-associated pathology. Efforts to manipulate monocyte and macrophage function are limited by our ability to effectively quantify the functional programs of these cells. We identified the gene Fth1, which encodes the ferritin H chain, as highly predictive of alveolar macrophage transcriptomic states during LPS-induced lung inflammation and developed an Fth1-mScarlet reporter mouse. In the steady-state lung, high Fth1-mScarlet expression is restricted to alveolar macrophages. In response to LPS-induced lung inflammation, Fth1 reporter activity is robustly increased in monocytes, with its expression reporting genes that are differentially expressed in monocytes versus macrophages. Consistent with this reporter-associated gene profile, within the Lyz2-GFP+CD11b+Ly6C+ gate, the highest Fth1 reporter expression was observed in CD11c+ cells, indicative of monocyte-to-macrophage differentiation. Although Fth1-mScarlet was induced in monocytes responding to either TLR4 ligation or M-CSF-induced macrophage differentiation in vitro, TLR4-dependent expression occurred with greater speed and magnitude. Considering this, we suggest that Fth1-mScarlet expression reports monocyte-to-macrophage differentiation, with increased expression in proinflammatory states. Dissecting macrophage differentiation from inflammatory programs will be enhanced when combining Fth1-mScarlet with other reporter systems. Thus, the Fth1-mScarlet model addresses an important lack of tools to report the diverse spectrum of monocyte and macrophage states in vivo.
RESUMO
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational framework to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to interleukin (IL)-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified cytokine-specific genes associated with late pSTAT3 time frames and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems. A record of this paper's transparent peer review process is included in the supplemental information.
Assuntos
Janus Quinases , Transdução de Sinais , Janus Quinases/genética , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fosforilação , Citocinas/metabolismo , Regulação da Expressão GênicaRESUMO
The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying dynamically regulated genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems.
RESUMO
Tissue-specific cytokine stimuli orchestrate specialized homeostatic functions of resident macrophages. In the lung, steady-state signaling by the cytokine GM-CSF is critical for alveolar macrophage (AM) development and function. Here, we showed that CISH, a suppressor of cytokine signaling (SOCS) family member that is acutely induced by diverse cytokine stimuli in many tissues, was expressed constitutively in AMs in response to steady-state GM-CSF signaling. Cish deficiency led to the generation of foamy AMs and the accumulation of pulmonary surfactant. These phenotypic changes were associated with enhanced activation of STAT5, AKT, and ERK and increased expression of the gene encoding the transcription factor GATA2. RNA-seq analysis of Cish−/− AMs revealed a set of dysregulated immune and lipid-process modules, including the increased expression of genes enriched for GATA2-binding motifs. Last, Cish-deficient, bone marrowderived macrophages showed increased Gata2 expression and accumulated more lipid upon incubation with bronchoalveolar lavage fluid compared with Cish-sufficient cells. Thus, CISH is part of a feedback loop that constrains homeostatic cytokine signaling and Gata2 expression to maintain AM identity and function.
Assuntos
Citocinas , Proteínas Supressoras da Sinalização de Citocina , Citocinas/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismoRESUMO
Activation of NF-κB is a common downstream consequence of inflammatory stimulation, yet it achieves stimulus-specific transcriptional responses. In this issue of Immunity, Adelaja et al. use single-cell imaging and computational approaches to understand temporal features of NF-κB dynamics that transmit information about immune threats.