Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(10): 2084-2095, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36062478

RESUMO

Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortalities and morbidities worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a family of macrocycle chemical compounds existing as a range of homologues; due to their structure, they can bind to biological materials, acting as supramolecular "hosts" to "guests", such as amino acids. Due to the increasing need for a nontoxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including herpes simplex virus 2 (HSV-2), respiratory syncytial virus (RSV) and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n], having an antiviral effect against enveloped and nonenveloped species. High levels of efficacy were observed with 5 min contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalization or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals), demonstrating the potential of supramolecular interactions for future antiviral disinfectants.


Assuntos
COVID-19 , Desinfetantes , Compostos Macrocíclicos , Aminoácidos , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Humanos , Imidazóis/química , Compostos Macrocíclicos/química , Proteínas de Membrana , SARS-CoV-2
2.
Phys Chem Chem Phys ; 15(34): 14502-10, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23897091

RESUMO

Polymer brushes are commonly used to modify the properties of solid surfaces. Here a family of polybasic poly(2-(diethylamino)ethyl methacrylate) brushes have been grown using ARGET ATRP from a cationic macroinitiator adsorbed on two types of silica surfaces: QCM crystals and oxidised silicon wafers. The pH-response of these brushes is investigated as a function of brush thickness in a constant flow environment in order to focus on the intrinsic dynamics of the polymer brushes. Independent QCM-D and in situ ellipsometry kinetic studies demonstrate the swelling process of protonation and solvent uptake is typically eight times faster than the corresponding neutralisation and solvent expulsion from the collapsing brush. However, the maximum rate of these processes is independent of brush thickness. The initial pH response of the brushes is hysteretic due to brush entanglement, which once overcome allows highly reversible pH-induced conformational changes. Multiple pH cycles demonstrate that the viscoelastic nature of the swollen state relative to the collapsed brush is independent of brush thickness.

3.
Langmuir ; 29(20): 6131-40, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23617419

RESUMO

Coatings consisting of polymer brushes are an effective way to modify solid interfaces. Polymer brush-modified hybrid particles have been prepared by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) of 2-(diethylamino)ethyl methacrylate (DEA) on silica particles. We have optimized the synthesis with respect to changing the reducing agent, temperature, and reaction solvent from an aqueous ethanol mixture to an aqueous methanol mixture. Our flexible electrostatically adsorbed macroinitiator approach allows for the modification of a variety of surfaces. Polybasic brushes have been grown on silica particles of different sizes, from 120 to 840 nm in diameter, as well as on wafers, and a comparison of the products has allowed the effect of surface curvature to be elucidated. An examination of the thickness of the dry brush and the aqueous hydrodynamic brush at both pH 7 and at 4 demonstrated that growth increased substantially with substrate curvature for particles with a diameter below 450 nm. This is attributed to the increasing separation between active chain ends, reducing the rate of termination. This is believed to be the first time that this effect has been demonstrated experimentally. Furthermore, we have seen that polymer brush growth on planar wafers was significantly reduced when the reaction mixture was stirred.


Assuntos
Metacrilatos/química , Nylons/química , Coloides/química , Eletrólitos/síntese química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Metacrilatos/síntese química , Estrutura Molecular , Nylons/síntese química , Tamanho da Partícula , Propriedades de Superfície
4.
ACS Macro Lett ; 1(10): 1161-1165, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35607187

RESUMO

Brush-modified silica hybrids have been synthesized by growing poly(2-(diethylamino)ethyl methacrylate) (poly(DEA)) brushes on 120 nm diameter silica particles by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). This is the first report of using SI-ARGET ATRP to synthesize poly(DEA) brushes. The kinetics of poly(DEA) brush growth in 4:1 v/v ethanol/water was monitored. The hydrodynamic diameter of the resulting brush-modified particles was dependent on the solution pH due to the weak polybasic nature of the brushes. Below the pKa of poly(DEA), the hydrodynamic diameter of the brush-modified particles increased with decreasing pH as a consequence of brush protonation, rearrangement and solvent uptake. This pH-response of the brushes was reversible and the hybrid particles exhibited significant hydrodynamic volume changes of up to 200% when the solution pH was cycled from pH 7 to pH 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA