Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 144: 14-21, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31550609

RESUMO

Multiple resistance to acetolactate synthase (ALS, EC 2.2.1.6) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) inhibitor herbicides was studied in two populations of Conyza canadensis (RTG and STG) harvested in southern Spain. Dose-response and enzymatic activity studies for the ALS-inhibiting herbicides showed only cross-resistance to sulfonylureas group but not to the other ALS chemical groups in the RTG population. Regarding glyphosate, the dose-response studies showed that the RTG population was 11.8 times more resistant than the STG population, while the inhibition of EPSPS enzyme (I50) was similar for both populations. Altered/reduced absorption and translocation were the main resistance mechanisms for glyphosate but not for tribenuron-methyl. The metabolic studies to find differences in the amounts of metabolites between the two populations were carried out using thin layer chromatography (for tribenuron-methyl) and capillary electrophoresis (for glyphosate). Metabolites were significantly differed among the two populations for tribenuron-methyl but not for glyphosate. The sequencing of the target-site ALS gene from RTG plants revealed a single point mutation, Pro-197-Ala, that causes resistance to sulfonylurea herbicide in C. canadensis.


Assuntos
Sulfonatos de Arila/farmacologia , Conyza/metabolismo , Glicina/análogos & derivados , Conyza/efeitos dos fármacos , Glicina/farmacologia , Resistência a Herbicidas , Estresse Oxidativo/efeitos dos fármacos , Espanha , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA