Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 83(15): 2709-2725.e10, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451262

RESUMO

For cells to perform their biological functions, they need to adopt specific shapes and form functionally distinct subcellular compartments. This is achieved in part via an asymmetric distribution of mRNAs within cells. Currently, the main model of mRNA localization involves specific sequences called "zipcodes" that direct mRNAs to their proper locations. However, while thousands of mRNAs localize within cells, only a few zipcodes have been identified, suggesting that additional mechanisms contribute to localization. Here, we assess the role of mRNA stability in localization by combining the isolation of the soma and neurites of mouse primary cortical and mESC-derived neurons, SLAM-seq, m6A-RIP-seq, the perturbation of mRNA destabilization mechanisms, and the analysis of multiple mRNA localization datasets. We show that depletion of mRNA destabilization elements, such as m6A, AU-rich elements, and suboptimal codons, functions as a mechanism that mediates the localization of mRNAs associated with housekeeping functions to neurites in several types of neurons.


Assuntos
Neuritos , Neurônios , Animais , Camundongos , RNA Mensageiro/genética , Códon , Estabilidade de RNA
2.
Nat Neurosci ; 26(3): 394-405, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646877

RESUMO

Cells adopt highly polarized shapes and form distinct subcellular compartments in many cases due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called 'zipcodes'. Although there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3' untranslated regions. This approach combines a method of separating the principal subcellular compartments of neurons-cell bodies and neurites-with a massively parallel reporter assay. N-zip identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons. Our analysis also provides, to our knowledge, the first demonstration of an miRNA affecting mRNA localization and suggests a strategy for detecting many more zipcodes.


Assuntos
Neuritos , Neurônios , Camundongos , Animais , RNA Mensageiro/metabolismo , Neurônios/metabolismo
4.
RNA ; 28(5): 766-779, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35232816

RESUMO

SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in the viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19, and 20) and another within NSP1 (R124), which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the antisense oligo (ASO) to efficiently and specifically down-regulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of antiviral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/virologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Nucleic Acids Res ; 49(17): 10007-10017, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34403468

RESUMO

Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Elongação Traducional da Cadeia Peptídica/genética , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/metabolismo , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Mutação com Ganho de Função/genética , Expressão Gênica/genética , Glicina/genética , Células HEK293 , Humanos , Fosforilação , Biossíntese de Proteínas/genética , RNA de Transferência de Glicina/genética
6.
Genome Biol ; 22(1): 191, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183069

RESUMO

BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.


Assuntos
Cardiomegalia/genética , Iniciação Traducional da Cadeia Peptídica , Locos de Características Quantitativas , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Biogênese de Organelas , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sarcômeros/metabolismo , Sarcômeros/patologia
7.
Wiley Interdiscip Rev RNA ; 11(4): e1590, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32059075

RESUMO

The intracellular localization of mRNAs allows neurons to control gene expression in neurite extensions (axons and dendrites) and respond rapidly to local stimuli. This plays an important role in diverse processes including neuronal growth and synaptic plasticity, which in turn serves as a foundation for learning and memory. Recent high-throughput analyses have revealed that neurites contain hundreds to thousands of mRNAs, but an analysis comparing the transcriptomes derived from these studies has been lacking. Here we analyze 20 datasets pertaining to neuronal mRNA localization across species and neuronal types and identify a conserved set of mRNAs that had robustly localized to neurites in a high number of the studies. The set includes mRNAs encoding for ribosomal proteins and other components of the translation machinery, mitochondrial proteins, cytoskeletal components, and proteins associated with neurite formation. Our combinatorial analysis provides a unique resource for future hypothesis-driven research. This article is categorized under: RNA Export and Localization > RNA Localization RNA Evolution and Genomics > Computational Analyses of RNA RNA Methods > RNA Analyses in Cells.


Assuntos
Neuritos/metabolismo , Neurônios/metabolismo , Transcriptoma , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Methods ; 162-163: 31-41, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742998

RESUMO

The subcellular localization and translation of mRNAs are fundamental biological processes. In neurons, they underlie cell growth and synaptic plasticity, which serves as a foundation of learning and memory. Multiple approaches have been developed to separate neurons on subcellular compartments - cell bodies (soma) and cell extensions (axons and dendrites) - for further biochemical analyses. Here we describe neurite/soma separation approach in combination with RNA sequencing and proteomic analyses to identify localized and locally translated RNAs and proteins. This approach allows quantification of around 7000 of local proteins and the entire local transcriptome. It provides a powerful tool for investigation of the mechanisms underlying RNA localization and local translation in neurons.


Assuntos
Neurônios/metabolismo , Proteômica/métodos , RNA Mensageiro/análise , RNA-Seq/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Células-Tronco Embrionárias Murinas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30082465

RESUMO

Most of the eukaryotic genome is pervasively transcribed, yielding hundreds to thousands of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), some of which are well conserved during evolution. Functions have been described for a few lncRNAs and circRNAs but remain elusive for most. Both classes of RNAs play regulatory roles in translation by interacting with messenger RNAs (mRNAs), microRNAs (miRNAs), or mRNA-binding proteins (RBPs), thereby modulating translation in trans Moreover, although initially defined as noncoding, a number of lncRNAs and circRNAs have recently been reported to contain functional open reading frames (ORFs). Here, we review current understanding of the roles played by lncRNAs and circRNAs in protein synthesis and discuss challenges and open questions in the field.


Assuntos
Biossíntese de Proteínas/fisiologia , RNA Circular/fisiologia , RNA Longo não Codificante/fisiologia , Humanos , Fases de Leitura Aberta , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Nucleic Acids Res ; 47(5): 2560-2573, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30590745

RESUMO

The proper subcellular localization of RNAs and local translational regulation is crucial in highly compartmentalized cells, such as neurons. RNA localization is mediated by specific cis-regulatory elements usually found in mRNA 3'UTRs. Therefore, processes that generate alternative 3'UTRs-alternative splicing and polyadenylation-have the potential to diversify mRNA localization patterns in neurons. Here, we performed mapping of alternative 3'UTRs in neurites and soma isolated from mESC-derived neurons. Our analysis identified 593 genes with differentially localized 3'UTR isoforms. In particular, we have shown that two isoforms of Cdc42 gene with distinct functions in neuronal polarity are differentially localized between neurites and soma of mESC-derived and mouse primary cortical neurons, at both mRNA and protein level. Using reporter assays and 3'UTR swapping experiments, we have identified the role of alternative 3'UTRs and mRNA transport in differential localization of alternative CDC42 protein isoforms. Moreover, we used SILAC to identify isoform-specific Cdc42 3'UTR-bound proteome with potential role in Cdc42 localization and translation. Our analysis points to usage of alternative 3'UTR isoforms as a novel mechanism to provide for differential localization of functionally diverse alternative protein isoforms.


Assuntos
Processamento Alternativo/genética , Neurônios/metabolismo , Isoformas de Proteínas/genética , Proteína cdc42 de Ligação ao GTP/genética , Regiões 3' não Traduzidas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Neuritos/metabolismo , Neurônios/citologia , Poliadenilação/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA/genética , Transporte de RNA/genética , RNA Mensageiro/genética
11.
Nat Commun ; 8(1): 583, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928394

RESUMO

Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity.Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity.


Assuntos
Neuritos/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Neurônios/metabolismo , Biossíntese de Proteínas , Transporte Proteico , Proteínas/genética , Proteoma/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma
12.
Mol Cell ; 66(1): 9-21.e7, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344080

RESUMO

Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila melanogaster/metabolismo , Proteínas Nucleares/biossíntese , Biossíntese de Proteínas , RNA/metabolismo , Ribossomos/metabolismo , Animais , Linhagem Celular , Códon de Iniciação , Códon de Terminação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fatores de Transcrição Forkhead/metabolismo , Genótipo , Cabeça , Espectrometria de Massas , Camundongos , Mutação , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Estado Nutricional , Fenótipo , RNA/química , RNA/genética , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Circular , Ratos , Ribossomos/química , Ribossomos/genética , Inanição/genética , Inanição/metabolismo , Relação Estrutura-Atividade , Transfecção
13.
Nucleic Acids Res ; 45(2): 938-950, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27604873

RESUMO

Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.


Assuntos
Evolução Molecular , Inativação Gênica , MicroRNAs/genética , Interferência de RNA , Animais , Linhagem Celular , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genética
14.
Mol Cell ; 63(6): 918-25, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27635758

RESUMO

Translation is a fundamental biological process by which ribosomes decode genetic information into proteins. The regulation of this process plays a key role in tuning protein levels, allowing cells to respond rapidly to changes in the environment and to synthesize proteins with precise timing and at specific subcellular locations. Despite detailed biochemical and structural insight into the mechanism of protein synthesis, translational dynamics and localization in a cellular context are less well understood. Here, we summarize recent efforts to quantify and visualize translation, focusing on four publications (Morisaki et al., 2016; Wang et al., 2016; Wu et al., 2016; Yan et al., 2016) describing novel approaches to imaging in real time the synthesis of nascent peptides from individual mRNAs in living cells.


Assuntos
Imagem Molecular/métodos , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Espectrometria de Massas/métodos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Análise de Sequência de RNA , Coloração e Rotulagem/métodos
15.
Nat Struct Mol Biol ; 18(11): 1218-26, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21984184

RESUMO

miRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR4-NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR4-NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR4-NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNAs, including inhibiting translation independently of deadenylation.


Assuntos
Autoantígenos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , MicroRNAs/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Autoantígenos/química , Autoantígenos/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Inativação Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Complexos Multiproteicos/química , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
16.
Mol Cell Biol ; 30(17): 4308-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584987

RESUMO

In eukaryotic cells, degradation of many mRNAs is initiated by removal of the poly(A) tail followed by decapping and 5'-3' exonucleolytic decay. Although the order of these events is well established, we are still lacking a mechanistic understanding of how deadenylation and decapping are linked. In this report we identify human Pat1b as a protein that is tightly associated with the Ccr4-Caf1-Not deadenylation complex as well as with the Dcp1-Dcp2 decapping complex. In addition, the RNA helicase Rck and Lsm1 proteins interact with human Pat1b. These interactions are mediated via at least three independent domains within Pat1b, suggesting that Pat1b serves as a scaffold protein. By tethering Pat1b to a reporter mRNA, we further provide evidence that Pat1b is also functionally linked to both deadenylation and decapping. Finally, we report that Pat1b strongly induces the formation of processing (P) bodies, cytoplasmic foci that contain most enzymes of the RNA decay machinery. An amino-terminal region within Pat1b serves as an aggregation-prone domain that nucleates P bodies, whereas an acidic domain controls the size of P bodies. Taken together, these findings provide evidence that human Pat1b is a central component of the RNA decay machinery by physically connecting deadenylation with decapping.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Receptores CCR4/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
17.
Nucleic Acids Res ; 38(19): 6673-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20530530

RESUMO

The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.


Assuntos
Proteínas de Drosophila/química , MicroRNAs/metabolismo , Interferência de RNA , Sequência de Aminoácidos , Animais , Proteínas Argonautas , Células Cultivadas , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Aminoácidos
18.
Curr Opin Cell Biol ; 21(3): 452-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19450959

RESUMO

MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.


Assuntos
Células/metabolismo , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Animais , Modelos Biológicos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
19.
RNA ; 15(5): 794-803, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304924

RESUMO

miRNA-mediated repression affects a wide range of biological processes including development and human pathologies. The GW182 protein is a key component of miRNA repression complex, recruited by Argonaute and functioning downstream to repress translation and accelerate mRNA degradation, but little is known about how GW182 proteins act. Using both tethered function and complementation assays, we identify three independent domains of the Drosophila GW182 protein (also termed Gawky) that are sufficient to repress mRNA. Each of these domains also functions independently of poly(A) tails. These results indicate that miRNA-mediated repression is facilitated by multiple domains of GW182.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/genética , Humanos , Biossíntese de Proteínas , Estabilidade de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
20.
Cell ; 124(3): 521-33, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16469699

RESUMO

Prior to reaching the posterior pole of the Drosophila oocyte, oskar mRNA is translationally silenced by Bruno binding to BREs in the 3' untranslated region. The eIF4E binding protein Cup interacts with Bruno and inhibits oskar translation. Validating current models, we directly demonstrate the mechanism proposed for Cup-mediated repression: inhibition of small ribosomal subunit recruitment to oskar mRNA. However, 43S complex recruitment remains inhibited in the absence of functional Cup, uncovering a second Bruno-dependent silencing mechanism. This mechanism involves mRNA oligomerization and formation of large (50S-80S) silencing particles that cannot be accessed by ribosomes. Bruno-dependent mRNA oligomerization into silencing particles emerges as a mode of translational control that may be particularly suited to coupling with mRNA transport.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas , Animais , Drosophila/genética , Drosophila/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Genes de Insetos , Técnicas In Vitro , Conformação de Ácido Nucleico , Oócitos/metabolismo , Biossíntese de Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA