Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345230

RESUMO

Despite the numerous clearing techniques that emerged in the last decade, processing postmortem human brains remains a challenging task due to its dimensions and complexity, which make imaging with micrometer resolution particularly difficult. This paper presents a protocol to perform the reconstruction of volumetric portions of the human brain by simultaneously processing tens of sections with the SHORT (SWITCH - H2O2 - Antigen Retrieval - 2,2'-thiodiethanol [TDE]) tissue transformation protocol, which enables clearing, labeling, and sequential imaging of the samples with light-sheet fluorescence microscopy (LSFM). SHORT provides rapid tissue clearing and homogeneous multi-labeling of thick slices with several neuronal markers, enabling the identification of different neuronal subpopulations in both white and grey matter. After clearing, the slices are imaged via LSFM with micrometer resolution and in multiple channels simultaneously for a rapid 3D reconstruction. By combining SHORT with LSFM analysis within a routinely high-throughput protocol, it is possible to obtain the 3D cytoarchitecture reconstruction of large volumetric areas at high resolution in a short time, thus enabling comprehensive structural characterization of the human brain.


Assuntos
Encéfalo , Peróxido de Hidrogênio , Humanos , Microscopia de Fluorescência/métodos , Encéfalo/diagnóstico por imagem , Neurônios , Neuroimagem/métodos , Imageamento Tridimensional , Imagem Óptica/métodos
2.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106176

RESUMO

Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Leveraging recent advancements in ultra-high resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 µm, we propose a multi-resolution U-Nets framework (MUS) that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation, while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.

3.
Methods Mol Biol ; 2566: 345-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152265

RESUMO

The microscopic visualization of nanoparticles in plants is crucial to elucidate the mechanisms of their uptake through the cell wall and plasma membrane and to localize the possible sites of their extracellular or intracellular accumulation. Lignin nanocarriers are polymeric hollow nanocapsules able to contain and transport several bioactive substances inside plant tissues. We describe here a method for the preparation of Fluorol Yellow 088-labeled lignin nanocapsules that allow their localization in plant organs and tissues by fluorescence microscopy.


Assuntos
Nanocápsulas , Lignina/metabolismo , Microscopia de Fluorescência , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA