Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Evol Biol ; 34(8): 1241-1255, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101919

RESUMO

Understanding the relative importance of sexual and natural selection in shaping morphological traits is a long-standing goal of evolutionary ecology. Male-biased sexual size dimorphism (SSD) is typically associated with male-male competition. Similarly, male polymorphisms are considered a consequence of competitive social interactions. This classic paradigm overlooks the fact that environmental factors mediate social interactions and can lead to ecological adaptations. Common side-blotched lizards, Uta stansburiana, are a model system for this paradigm due to well-known rock-paper-scissors social dynamics between male morphs. SSD in this species has been considered primarily a consequence of social interactions, with male size resulting from the number of morphs in each population and female size being constrained through fecundity benefits. We test if the environment explains intraspecific variation in SSD and number of male morphs in U. stansburiana. By compiling data from 49 populations, we show that environmental variables are stronger predictors of SSD than the number of male morphs. Similarly, we show that the environment mediates SSD and potentially contributes to morph loss in colder environments. We propose that the environment favours smaller males in areas of high seasonality. Our results demonstrate the importance of the environment as a mediator of SSD.


Assuntos
Lagartos , Animais , Evolução Biológica , Tamanho Corporal , Feminino , Lagartos/genética , Masculino , Reprodução , Seleção Genética , Caracteres Sexuais
2.
Oecologia ; 191(1): 61-71, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31432247

RESUMO

Sexual size dimorphism (SSD) often results in dramatic differences in body size between females and males. Despite its ecological importance, little is known about the relationship between developmental, physiological, and energetic mechanisms underlying SSD. We take an integrative approach to understand the relationship between developmental trajectories, metabolism, and environmental conditions resulting in extreme female-biased SSD in the crab spider Mecaphesa celer (Thomisidae). We tested for sexual differences in growth trajectories, as well as in the energetics of growth, hypothesizing that female M. celer have lower metabolic rates than males or higher energy assimilation. We also hypothesized that the environment in which spiderlings develop influences the degree of SSD of a population. We tracked growth and resting metabolic rates of female and male spiderlings throughout their ontogeny and quantified the adult size of individuals raised in a combination of two diet and two temperature treatments. We show that M. celer's SSD results from differences in the shape of female and male growth trajectories. While female and male resting metabolic rates did not differ, diet, temperature, and their interaction influenced body size through an interactive effect with sex, with females being more sensitive to the environment than males. We demonstrate that the shape of the growth curve is an important but often overlooked determinant of SSD and that females may achieve larger sizes through a combination of high food ingestion and low activity levels. Our results highlight the need for new models of SSD based on ontogeny, ecology, and behavior.


Assuntos
Caracteres Sexuais , Aranhas , Animais , Tamanho Corporal , Feminino , Masculino
3.
Ecol Evol ; 7(22): 9592-9601, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29187992

RESUMO

Female-biased sexual size dimorphism (SSD) is often considered an epiphenomenon of selection for the increased mating opportunities provided by early male maturation (i.e., protandry). Empirical evidence of the adaptive significance of protandry remains nonetheless fairly scarce. We use field data collected throughout the reproductive season of an SSD crab spider, Mecaphesa celer, to test two hypotheses: Protandry provides fitness benefits to males, leading to female-biased SSD, or protandry is an indirect consequence of selection for small male size/large female size. Using field-collected data, we modeled the probability of mating success for females and males according to their timing of maturation. We found that males matured earlier than females and the proportion of virgin females decreased abruptly early in the season, but unexpectedly increased afterward. Timing of female maturation was not related to clutch size, but large females tended to have more offspring than small females. Timing of female and male maturation was inversely related to size at adulthood, as early-maturing individuals were larger than late-maturing ones, suggesting that both sexes exhibit some plasticity in their developmental trajectories. Such plasticity indicates that protandry could co-occur with any degree and direction of SSD. Our calculation of the probability of mating success along the season shows multiple male maturation time points with similar predicted mating success. This suggests that males follow multiple strategies with equal success, trading-off access to virgin females with intensity of male-male competition. Our results challenge classic hypotheses linking protandry and female-biased SSD, and emphasize the importance of directly testing the often-assumed relationships between co-occurring animal traits.

4.
Glob Chang Biol ; 22(5): 1722-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26854767

RESUMO

A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed.


Assuntos
Mudança Climática , Movimento , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Cadeia Alimentar , Aquecimento Global , Modelos Biológicos , Temperatura
5.
Behav Processes ; 82(2): 153-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19539731

RESUMO

Animals present an enormous variety of behavioural defensive mechanisms, which increase their survival, but often at a cost. Several animal taxa reduce their chances of being detected and/or recognized as prey items by freezing (remaining completely motionless) in the presence of a predator. We studied costs and benefits of freezing in immature Eumesosoma roeweri (Opiliones, Sclerosomatidae). Preliminary observations showed that these individuals often freeze in the presence of the syntopic predatory spider Schizocosa ocreata (Araneae, Lycosidae). We verified that harvestmen paired with predators spent more time freezing than when alone or when paired with a conspecific. Then, we determined that predator chemical cues alone did not elicit freezing behaviour. Next, we examined predator behaviour towards moving/non-moving prey and found that spiders attacked moving prey significantly more, suggesting an advantage of freezing in the presence of a predator. Finally, as measure of the foraging costs of freezing, we found that individuals paired with a predator for 2h gained significantly less weight than individuals paired with a conspecific or left alone. Taken together, our results suggest that freezing may protect E. roeweri harvestmen from predatory attacks by wolf spiders, but at the cost of reduced food and/or water intake.


Assuntos
Comportamento Animal , Reação de Fuga/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Aranhas/fisiologia , Animais , Especificidade da Espécie
6.
Behav Processes ; 80(1): 51-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18929628

RESUMO

The evolution of sexually dimorphic traits has been the focus of much theoretical work, but empirical approaches to this topic have not been equally prolific. Males of the neotropical family Gonyleptidae usually present a strong fourth pair of legs armed with spines, but their functional significance is unknown. We investigated the putative functions of the leg armature in the harvestman Neosadocus maximus. Being a non-visual species, the spines on male legs can only be perceived by females through physical contact. Thus, we could expect females to touch the armature on the legs of their mates if they were to evaluate it. However, we found no support for this hypothesis. We did show that (1) leg armature is used as a weapon in contests between males and (2) spines and associated sensilla are sexually dimorphic structures involved in "nipping behavior", during which a winner emerged in most fights. Finally, we demonstrate that five body structures directly involved in male-male fights show positive allometry in males, presenting slopes higher than 1, whereas the same structures show either no or negative allometry in the case of females. In conclusion, leg armature in male harvestmen is clearly used as a device in intrasexual contests.


Assuntos
Aracnídeos/fisiologia , Extremidades/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Aracnídeos/anatomia & histologia , Extremidades/anatomia & histologia , Feminino , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA