Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 208: 149-158, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29864706

RESUMO

The analytes such as ascorbic acid (AA) present in Sechium edule were extracted (294 mg AA kg-1 fruit) in an aqueous media for its potential application for Ag-doping onto wurtzite ZnO. The bandgap of ZnO was decreased to 2.85 eV at the optimal Ag-loading of 1.18% (w/w) against 3.13 eV for the control catalyst without using the analytes and, the commercial AA only could reduce the bandgap to 2.91 eV. The saturation photo-electrochemical current density (46.68 mA cm-2) at Eanode ≥ 0.31 V vs. Ag/AgCl was almost double than pristine ZnO under visible light illumination (λmean = 525 nm, 18 K lux) and, the current density was insignificant in the dark. The doped catalyst exhibited the maximum 79.5% degradation (71% COD removal) of an anti-analgesic drug, dipyrone (100 µg L-1 dipyrone, catalyst 100 mg L-1) resulted from the formation of O2•- radical (g-factor of 2.002-2.008) and paramagnetic oxygen vacancies (g-factor of 2.020) and, no effect of dye-sensitization was noted. The highest quantum yield was found to be 34.7%. The catalyst loss was 6% after the fourth cycle and the dipyrone degradation was reduced to 70.8%.


Assuntos
Ácido Ascórbico/química , Dipirona/química , Luz , Processos Fotoquímicos , Prata/química , Óxido de Zinco/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA