RESUMO
OBJECTIVE: The specific breast milk-derived metabolites that mediate host-microbiota interactions and contribute to the onset of atopic dermatitis (AD) remain unknown and require further investigation. DESIGN: We enrolled 250 mother-infant pairs and collected 978 longitudinal faecal samples from infants from birth to 6 months of age, along with 243 maternal faecal samples for metagenomics. Concurrently, 239 corresponding breast milk samples were analysed for metabolomics. Animal and cellular experiments were conducted to validate the bioinformatics findings. RESULTS: The clinical findings suggested that a decrease in daily breastfeeding duration was associated with a reduced incidence of AD. This observation inspired us to investigate the effects of breast milk-derived fatty acids. We found that high concentrations of arachidonic acid (AA), but not eicosapentaenoic acid (EPA) or docosahexaenoic acid, induced gut dysbiosis in infants. Further investigation revealed that four specific bacteria degraded mannan into mannose, consequently enhancing the mannan-dependent biosynthesis of O-antigen and lipopolysaccharide. Correlation analysis confirmed that in infants with AD, the abundance of Escherichia coli under high AA concentrations was positively correlated with some microbial pathways (eg, 'GDP-mannose-derived O-antigen and lipopolysaccharide biosynthesis'). These findings are consistent with those of the animal studies. Additionally, AA, but not EPA, disrupted the ratio of CD4/CD8 cells, increased skin lesion area and enhanced the proportion of peripheral Th2 cells. It also promoted IgE secretion and the biosynthesis of prostaglandins and leukotrienes in BALB/c mice fed AA following ovalbumin immunostimulation. Moreover, AA significantly increased IL-4 secretion in HaCaT cells costimulated with TNF-α and INF-γ. CONCLUSIONS: This study demonstrates that AA is intimately linked to the onset of AD via gut dysbiosis.
RESUMO
To investigate the inhibitory effects of various transition metal ions on nitrogen removal and their underlying mechanisms, the single and combined effects of Cu2+ Ni2+ and Zn2+ on Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria Acinetobacter sp. TAC-1 were studied in a batch experiment system. The results revealed that increasing concentrations of Cu2+ and Ni2+ had a detrimental effect on the removal of ammonium nitrogen (NH4+-N) and total nitrogen (TN). Specifically, Cu2+ concentration of 10 mg/L, the TN degradation rate was 55.09%, compared to 77.60% in the control group. Cu2+ exhibited a pronounced inhibitory effect. In contrast, Zn2+ showed no apparent inhibitory effect on NH4+-N removal and even enhanced TN removal at lower concentrations. However, when the mixed ion concentration of Zn2++Ni2+ exceeded 5 mg/L, the removal rates of NH4+-N and TN were significantly reduced. Moreover, transition metal ions did not significantly impact the removal rates of chemical oxygen demand (COD). The inhibition model fitting results indicated that the inhibition sequence was Cu2+ > Zn2+ > Ni2+. Transcriptome analysis demonstrated that metal ions influence TAC-1 activity by modulating the expression of pivotal genes, including zinc ABC transporter substrate binding protein (znuA), ribosomal protein (rpsM), and chromosome replication initiation protein (dnaA) and DNA replication of TAC-1 under metal ion stress, leading to disruptions in transcription, translation, and cell membrane structure. Finally, a conceptual model was proposed by us to summarize the inhibition mechanism and possible response strategies of TAC-1 bacteria under metal ion stress, and to address the lack of understanding regarding the influence mechanism of TAC-1 on nitrogen removal in wastewater co-polluted by metal and ammonia nitrogen. The results provided practical guidance for the management of transition metal and ammonia nitrogen co-polluted water bodies, as well as the removal of high nitrogen.
Assuntos
Desnitrificação , Nitrificação , Acinetobacter/metabolismo , Acinetobacter/genética , Processos Heterotróficos , Aerobiose , Elementos de Transição/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Quercetin, a bioactive natural compound renowned for its potent anti-inflammatory, antioxidant, and antiviral properties, has exhibited therapeutic potential in various diseases. Given that bronchopulmonary dysplasia (BPD) development is closely linked to inflammation and oxidative stress, and quercetin, a robust antioxidant known to activate NRF2 and influence the ferroptosis pathway, offers promise for a wide range of age groups. Nonetheless, the specific role of quercetin in BPD remains largely unexplored. This study aims to uncover the target role of quercetin in BPD through a combination of network pharmacology, molecular docking, computer analyses, and experimental evaluations.
Assuntos
Displasia Broncopulmonar , Ferroptose , Hiperóxia , Animais , Recém-Nascido , Humanos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/metabolismo , Hiperóxia/tratamento farmacológico , Hiperóxia/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Animais Recém-Nascidos , Antioxidantes , Farmacologia em RedeRESUMO
Background: Hypothyroidism, a prevalent endocrine disorder, carries significant implications for maternal and infant health, especially in the context of maternal hypothyroidism. Despite a gradual surge in recent research, achieving a comprehensive understanding of the current state, focal points, and developmental trends in this field remains challenging. Clarifying these aspects and advancing research could notably enhance maternal-infant health outcomes. Therefore, this study employs bibliometric methods to systematically scrutinize maternal hypothyroidism research, serving as a reference for further investigations. Objective: Through bibliometric analysis, this study seeks to unveil key research focus areas, developmental trends, and primary contributors in Maternal Hypothyroidism. The findings offer insights and recommendations to inform future research endeavors in this domain. Methods: Literature metrics analysis was performed on data retrieved and extracted from the Web of Science Core Collection database. The analysis examined the evolution and thematic trends of literature related to Maternal Hypothyroidism. Data were collected on October 28, 2023, and bibliometric analysis was performed using VOSviewer, CiteSpace, and the Bibliometrix software package, considering specific characteristics such as publication year, country/region, institution, authorship, journals, references, and keywords. Results: Retrieved from 1,078 journals, 4,184 articles were authored by 18,037 contributors in 4,580 institutions across 113 countries/regions on six continents. Maternal Hypothyroidism research publications surged from 44 to 310 annually, a 604.54% growth from 1991 to 2022. The USA (940 articles, 45,233 citations), China Medical University (82 articles, 2,176 citations), and Teng, Weiping (52 articles, 1,347 citations) emerged as the most productive country, institution, and author, respectively. "Thyroid" topped with 233 publications, followed by "Journal of Clinical Endocrinology & Metabolism" (202) with the most citations (18,513). "Pregnancy" was the most cited keyword, with recent high-frequency keywords such as "outcome," "gestational diabetes," "iodine intake," "preterm birth," "guideline," and "diagnosis" signaling emerging themes in Maternal Hypothyroidism. Conclusions: This study unveils developmental trends, global collaboration patterns, foundational knowledge, and emerging frontiers in Maternal Hypothyroidism. Over 30 years, research has predominantly focused on aspects like diagnosis, treatment guidelines, thyroid function during pregnancy, and postpartum outcomes, with a central emphasis on the correlation between maternal and fetal health.
Assuntos
Hipotireoidismo , Nascimento Prematuro , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Hipotireoidismo/epidemiologia , Autoria , BibliometriaRESUMO
Anisotropic heat transfer is crucial for advanced thermal management in nanoelectronics, optoelectronics, thermoelectrics, etc. Traditional approaches modifying thermal conductivity (κ) mostly adjust the magnitude but disregard anisotropy. Herein, by solving the Boltzmann transport equation from first principles, we report κ anisotropy modulation by alloying gallium nitride (GaN) and aluminum nitride (AlN). The alloyed Al0.5Ga0.5N demonstrates reversed κ anisotropy compared to the parent materials, where the preferred thermal transport direction shifts from cross-plane to in-plane. Moreover, the κ anisotropy (κin-plane/κcross-plane) in the Al0.5Ga0.5N alloy is enhanced to 1.63 and 1.51 times that in bulk GaN and AlN, respectively, which can be further enhanced by increased temperature. Deep analysis attributes the alloying reversed κ anisotropy of Al0.5Ga0.5N to the structure distortion-driven phonon group velocity, as well as phonon anharmonicity. The alloying reversed κ anisotropy as reported in this study sheds light on future studies in advanced heat dissipation and intelligent thermal management.
RESUMO
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Assuntos
Limosilactobacillus reuteri , Animais , Imunomodulação , Antibacterianos , Anticorpos , AntioxidantesRESUMO
SCOPE: Dityrosine (DT) is a protein oxidation marker present in many high-protein foods, such as dairy and meat products. Chronic dietary intake of DT induces oxidative stress damage in the liver and impairs energy metabolism. This study aims to investigate the mechanisms underlying the effects of DT on disrupted hepatic energy metabolism. METHODS AND RESULTS: The study investigates hepatic lipid accumulation, redox status imbalance, mitochondrial dysfunction, and energy metabolism disorders in 4-week-old C57BL/6J mice after 35 days of DT (420 µg kg-1 body weight) treatment. Transcriptome sequencing and quantitative real-time PCR in HepG2 cells show that DT mainly acted via miR-144-3p. miR-144-3p targets immune responsive gene 1 (IRG1) and decreases the fumaric acid level in the tricarboxylic acid (TCA) cycle, thereby decreasing nuclear factor erythroid 2-related factor 2 (Nrf2) expression and antioxidant activity. CONCLUSION: Administration of lycopene, a strong antioxidant, alleviates DT-induced damage in mice, confirming the involvement of the Nrf2 pathway in DT-induced abnormal hepatic lipid metabolism and energy homeostasis.
Assuntos
MicroRNAs , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Baixo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lipídeos/farmacologia , MitocôndriasRESUMO
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Assuntos
Dermatite Atópica , Hipersensibilidade , Adolescente , Adulto , Criança , Humanos , Lactobacillus , Pele , CitocinasRESUMO
The purpose of this study was to evaluate the potential effect of oxidative stress on the intestine of squabs, and to explore the molecular mechanisms. A total of 360 1-day-old squabs were divided evenly into five different groups (n = 72/group): control, negative control, low, medium, and high dose groups. On the 3rd, 5th, and 7th days, squabs in the control group were not effectively treated and the negative control group were intraperitoneally injected with normal saline, whereas the H2O2 group was injected with H2O2 of 2.0, 2.5, and 3.0 mmol/kg BW respectively. On the 21st day, the serum and duodenum were collected for further analysis. The results indicated that, compared with the control group, H2O2 caused squabs weight loss and intestinal morphology damage, and these effects were enhanced with an increase in dose. Further examination revealed that the contents of oxidative stress markers in both the serum and duodenum of the H2O2 group were significantly enhanced as the dose was increased. In addition, H2O2 exposure also resulted in the lower mRNA expression of Occludin, ZO-1, Beclin1, Atg5, and Caspase-3, but the expression of Claudin2 and Bcl-2 was decreased in comparison to the control group. These findings suggested that duodenal oxidative damage was accompanied by weight loss, changes in intestinal morphology, redox status imbalance, apoptosis as well as autophagy of intestinal cells, with, effects of 3.0 mmol/kg BW of H2O2 being the most severe.
RESUMO
This study aimed to evaluate the correlation between microecology of sediments and water as well as their spatial-temporal variations in Changshou Lake. The results demonstrated that microecology in the lake exhibits spatiotemporal heterogeneity, and microbial diversity of sediments was significantly higher than that of water body. Further, it was found that there was statistically insignificant positive correlation between microecology of sediments and that of water body. PCoA and community structure analysis revealed that the predominant phyla which exhibited significant spatial differences in sediments were Proteobacteria, Actinobacteria and Planctomycetes. While, the distribution of dominant bacteria Actinobacteria and Verrucomicrobia in water body showed significant seasonal differences. Microbial networks analysis indicated that there was a cooperative symbiotic relationship between lake microbial communities. Notably, the same bacterial genus had no significant positive correlation in sediment and water, which suggested that bacteria transport between sediment-water interface does not influence the microecological functions of lake water.
Assuntos
Bactérias , Água , Estações do Ano , Bactérias/genética , Lagos/química , China , Sedimentos Geológicos/química , RNA Ribossômico 16SRESUMO
With the development of chip technology, the density of transistors on integrated circuits is increasing and the size is gradually shrinking to the micro-/nanoscale, with the consequent problem of heat dissipation on chips becoming increasingly serious. For device applications, efficient heat dissipation and thermal management play a key role in ensuring device operation reliability. In this review, we summarize the thermal management applications based on 2D materials from both theoretical and experimental perspectives. The regulation approaches of thermal transport can be divided into two main types: intrinsic structure engineering (acting on the intrinsic structure) and non-structure engineering (applying external fields). On one hand, the thermal transport properties of 2D materials can be modulated by defects and disorders, size effect (including length, width, and the number of layers), heterostructures, structure regulation, doping, alloy, functionalizing, and isotope purity. On the other hand, strain engineering, electric field, and substrate can also modulate thermal transport efficiently without changing the intrinsic structure of the materials. Furthermore, we propose a perspective on the topic of using magnetism and light field to modulate the thermal transport properties of 2D materials. In short, we comprehensively review the existing thermal management modulation applications as well as the latest research progress, and conclude with a discussion and perspective on the applications of 2D materials in thermal management, which will be of great significance to the development of next-generation nanoelectronic devices.
RESUMO
Bronchopulmonary dysplasia (BPD) in neonates is the most common pulmonary disease that causes neonatal mortality, has complex pathogenesis, and lacks effective treatment. It is associated with chronic obstructive pulmonary disease, pulmonary hypertension, and right ventricular hypertrophy. The occurrence and development of BPD involve various factors, of which premature birth is the most crucial reason for BPD. Under the premise of abnormal lung structure and functional product, newborns are susceptible to damage to oxides, free radicals, hypoxia, infections and so on. The most influential is oxidative stress, which induces cell death in different ways when the oxidative stress balance in the body is disrupted. Increasing evidence has shown that programmed cell death (PCD), including apoptosis, necrosis, autophagy, and ferroptosis, plays a significant role in the molecular and biological mechanisms of BPD and the further development of the disease. Understanding the mode of PCD and its signaling pathways can provide new therapeutic approaches and targets for the clinical treatment of BPD. This review elucidates the mechanism of BPD, focusing on the multiple types of PCD in BPD and their molecular mechanisms, which are mainly based on experimental results obtained in rodents.
Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Humanos , Gravidez , Feminino , Recém-Nascido , Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/patologia , Apoptose , Pulmão/metabolismo , Estresse OxidativoRESUMO
Early life nutritional supplementation can significantly improve pigeon health. Both the nutritional crops of parental pigeons and the intestinal development of squabs play key roles in the growth rate of squabs. Tea polyphenols (TPs), as natural plant extracts, exhibit potential biological activities. However, the impact of TPs on the intestinal function of squabs is not known. This study evaluated the effects of TPs on growth performance, immunity, antioxidation, and intestinal function in squabs. A total of 432 young pigeons (1 day old) were divided into four groups: a control group (fed a basic diet) and three treatment groups (low, medium, and high dose groups; 100, 200, and 400 mg/kg TPs, respectively). On the 28th day, samples of serum, mucosal tissue, and digests from the ileum of squabs were collected for analysis. The results revealed that TP supplementation significantly reduced the feed-to-meat ratio and improved the feed utilization rate and serum biochemical indices in squabs. Additionally, it enhanced the intestinal barrier function of birds by promoting intestinal development and integrity of tight junctions and regulating digestive enzyme activities and intestinal flora. Mechanistically, TPs activated the Nrf2-ARE signaling pathway, which may be associated with improved antioxidant and immune responses, correlating with an increased abundance of Candida arthritis and Corynebacterium in the ileum.
RESUMO
Two-dimensional materials have attracted significant research interest due to the fantastic properties that are unique to their bulk counterparts. In this paper, from the state-of-the-art first-principles, we predicted the stable structure of a monolayer counterpart of γ-CuI (cuprous iodide) that is a p-type wide bandgap semiconductor. The monolayer CuI presents multifunctional superiority in terms of electronic, optical, and thermal transport properties. Specifically, the ultralow thermal conductivity of 0.116 W m-1 K-1 is predicted for monolayer CuI, which is much lower than those of γ-CuI (0.997 W m-1 K-1) and other typical semiconductors. Moreover, an ultrawide direct bandgap of 3.57 eV is found in monolayer CuI, which is even larger than that of γ-CuI (2.95-3.1 eV), promising for applications in nano-/optoelectronics with better optical performance. The ultralow thermal conductivity and direct wide bandgap of monolayer CuI as reported in this study would promise its potential applications in transparent and wearable electronics.
RESUMO
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
RESUMO
One of the biggest challenges of applying heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria to treat high salt organic wastewater lies in the inhibitory effect exerted by salinity. To study the inhibition effect and underlying mechanism induced by different ion types and ion composition, the individual and combined effects of NaCl, KCl and Na2SO4 on HN-AD bacteria Acinetobacter sp. TAC-1 were systematically investigated by batch experiments. Results indicated that the ammonia nitrogen removal yield and TAC-1 activity decreased with increased salt concentration. NaCl, KCl and Na2SO4 exerted different degrees of inhibition on TAC-1, with half concentration inhibition constant values of 0.205, 0.238 and 0.110 M, respectively. A synergistic effect on TAC-1 was found with the combinations of NaCl + KCl, NaCl + Na2SO4 and NaCl + KCl + Na2SO4. The whole RNA resequencing suggested that transcripts of denitrification genes (nirB and nasA) were significantly downregulated with increased Na2SO4 concentration. Simultaneously, Na2SO4 stress disrupted cell respiration, DNA replication, transcription, translation, and induced oxidative stress. Finally, we proposed a conceptual model to summarize the inhibition mechanisms and possible response strategies of TAC-1 bacteria under Na2SO4 stress.
Assuntos
Desnitrificação , Nitrificação , Aerobiose , Bactérias , Nitritos , Nitrogênio , Salinidade , Cloreto de Sódio , Águas ResiduáriasRESUMO
Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3ß mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.
Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Animais , Antioxidantes/farmacologia , Peso Corporal , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Fibras na Dieta/farmacologia , Glucose/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Resistência à Insulina/genética , Masculino , Malondialdeído/metabolismo , Mitocôndrias , Proteínas Musculares , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/etiologia , Obesidade/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Light spectrum can influence microalgal growth and metabolites accumulation significantly. However, the related mechanism has not been fully elucidated. Here, an oleaginous microalga Eustigmatos cf. polyphem, which also featured with high content of palmitoleic acid (POA) and ß-carotene, was cultured with LEDs-based red light (RL) and blue light (BL). The results showed that the biomass, total lipid content and POA content were much higher under RL than these under BL, regardless of nitrogen concentration. However, the ß-carotene content under RL was significantly lower than that under BL. Transcriptomic analysis revealed that photosynthesis, central carbon metabolism, fatty acid and glycerolipid biosynthesis were elevated, supporting the fast cell growth and high lipid content with POA under RL. In contrast, upregulation of key enzymes in carotenoids biosynthesis and suppression of ß-carotene conversion promoted ß-carotene accumulation under BL. These findings provide a feasible strategy for promoting lipids, POA and ß-carotene in E. cf. polyphem.
Assuntos
Microalgas , Estramenópilas , Biomassa , Luz , Estramenópilas/genética , Transcriptoma/genética , beta CarotenoRESUMO
Preeclampsia is a clinical syndrome characterized by multiple-organ dysfunction, such as maternal hypertension and proteinuria, after 20 weeks of gestation. It is a common cause of fetal growth restriction, fetal malformation, and maternal death. At present, termination of pregnancy is the only way to prevent the development of the disease. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are involved in important pathological and physiological functions in life cycle activities including ontogeny, reproduction, apoptosis, and cell reprogramming, and are closely associated with human diseases. Accumulating evidence suggests that non-coding RNAs are involved in the pathogenesis of preeclampsia through regulation of various physiological functions. In this review, we discuss the current evidence of the pathogenesis of preeclampsia, introduce the types and biological functions of non-coding RNA, and summarize the roles of non-coding RNA in the pathophysiological development of preeclampsia from the perspectives of oxidative stress, hypoxia, angiogenesis, decidualization, trophoblast invasion and proliferation, immune regulation, and inflammation. Finally, we briefly discuss the potential clinical application and future prospects of non-coding RNA as a biomarker for the diagnosis of preeclampsia.
RESUMO
Background: Angiostrongylus cantonensis (A. cantonensis), is a food-borne zoonotic parasite that can cause central nervous system (CNS) injury characterized by eosinophilic meningitis. However, the pathogenesis of angiostrongylosis remains elusive. Natural killer cells (NK cells) are unique innate lymphocytes important in early defense against pathogens. The aim of this study was to investigate the role of NK cells in A. cantonensis infection and to elucidate the key factors that recruit NK cells into the CNS. Methods: Mouse model of A. cantonensis infection was established by intragastric administration of third-stage larvae. The expression of cytokines and chemokines at gene and protein levels was analyzed by qRT-PCR and ELISA. Distribution of NK cells was observed by immunohistochemistry and flow cytometry. NK cell-mediated cytotoxicity against YAC-1 cells was detected by LDH release assay. The ability of NK cells to secrete cytokines was determined by intracellular flow cytometry and ELISA. Depletion and adoptive transfer of NK cells in vivo was induced by tail vein injection of anti-asialo GM1 rabbit serum and purified splenic NK cells, respectively. CX3CL1 neutralization experiment was performed by intraperitoneal injection of anti-CX3CL1 rat IgG. Results: The infiltration of NK cells in the CNS of A. cantonensis-infected mice was observed from 14 dpi and reached the peak on 18 and 22 dpi. Compared with uninfected splenic NK cells, the CNS-infiltrated NK cells of infected mice showed enhanced cytotoxicity and increased IFN-γ and TNF-α production ability. Depletion of NK cells alleviated brain injury, whereas adoptive transfer of NK cells exacerbated brain damage in A. cantonensis-infected mice. The expression of CX3CL1 in the brain tissue and its receptor CX3CR1 on the CNS-infiltrated NK cells were both elevated after A. cantonensis infection. CX3CL1 neutralization reduced the percentage and absolute number of the CNS-infiltrated NK cells and relieved brain damage caused by A. cantonensis infection. Conclusions: Our results demonstrate that the up-regulated CX3CL1 in the brain tissue recruits NK cells into the CNS and aggravates brain damage caused by A. cantonensis infection. The findings improve the understanding of the pathogenesis of angiostrongyliasis and expand the therapeutic intervention in CNS disease.