Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 1): 124669, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150375

RESUMO

In this study, porous hemostatic sponges (CGS1, CGS2 and CGS3) with proper absorption (38-43×) and air permeability (2214 g/m2·day) were prepared from l-glutamine-modified chitosan (CG), tannic acid-modified gelatin (GTA), and oxidized dextran (ODEX) by Schiff base crosslinking reaction. Among them, CGS2 was proved to have high porosity (88.98 %), durable water retention (>6 h), strong antibacterial activity, proper mechanical quality, and suitable tissue adhesion. In addition, CGS2 had good biocompatibility, mainly manifested in low hemolysis rate (<0.4 %), low cytotoxicity (relative cell activity>90 %), and good biodegradability in vitro. The hemostatic time and blood loss in CGS2 group were much lower than those in commercial gelatin sponge group in three animal injury models. Moreover, the activated partial thromboplastin time (APTT) and the prothrombin time (PT) results indicated that CGS2 promoted coagulation by activating the endogenous coagulation pathway. These results suggested that CGS2 had great potential for rapid hemostasis and avoidance of wound infection.


Assuntos
Quitosana , Hemostáticos , Animais , Hemostáticos/farmacologia , Quitosana/farmacologia , Gelatina/farmacologia , Dextranos/farmacologia , Glutamina , Hemostasia , Bandagens
2.
Int J Biol Macromol ; 242(Pt 4): 125087, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247710

RESUMO

To fabricate multifunctional nanoparticles (NPs) based on chitosan (CS) derivative, we first prepared quaternized CS (2-hydroxypropyltrimethyl ammonium chloride CS, HTCC) via a one-step approach, then synthesized p-coumaric acid (p-CA) modified HTCC (HTCC-CA) for the first time through amide reaction, and finally fabricated a series of NPs (HTCC-CA NPs) using HTCC-CAs with different substitution degrees and sodium tripolyphosphate (TPP) by ionic gelation. Newly-prepared HTCC and HTCC-CAs were characterized by FT-IR, 1H NMR, elemental analysis (EA), full-wavelength UV scanning, silver nitrate titration, and Folin-Ciocalteu methods. DLS and TEM results demonstrated that three selected HTCC-CA NPs had moderate size (< 350 nm), good dispersion (PDI < 0.4), and positive zeta potential (11-20 mV). The HTCC-CA NPs had high antibacterial activity against six bacterial strains, and the minimum inhibitory concentration (MIC) values were almost the same as the minimum bactericidal concentration (MBC) values (250-1000 µg/mL). Also, the HTCC-CA NPs had good antioxidation (radical scavenging ratio > 65 %) and low cytotoxicity (relative cell viability >80 %) to the tested cells. Totally, HTCC-CA NPs with high antibacterial activity, great antioxidation, and low cytotoxicity might serve as new biomedical materials for promoting skin wound healing.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA