Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Research (Wash D C) ; 6: 0210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588618

RESUMO

An optical spectrometer is a basic spectral instrument that probes microscopic physical and chemical properties of macroscopic objects but generally suffers from difficulty in broadband time-resolved measurement. In this work, we report the creation of ultrabroadband white-light laser with a 3-dB bandwidth covering 385 to 1,080 nm, pulse energy of 1.07 mJ, and pulse duration of several hundred femtoseconds by passing 3-mJ pulse energy, 50-fs pulse duration Ti:Sapphire pulse laser through a cascaded fused silica plate and chirped periodically poled lithium niobate crystal. We utilize this unprecedented superflat, ultrabroadband, and intense femtosecond laser light source to build a single-shot (i.e., single-pulse) subpicosecond pulse laser ultraviolet-visible-near-infrared spectrometer and successfully measure various atomic and molecular absorption spectra. The single-shot ultrafast spectrometer may open up a frontier to monitor simultaneously the ultrafast dynamics of multiple physical and chemical processes in various microscopic systems.

2.
Research (Wash D C) ; 2021: 1539730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842891

RESUMO

White laser with balanced performance of broad bandwidth, high average and peak power, large pulse energy, high spatial and temporal coherence, controllable spectrum profile, and overall chroma are highly desirable in various fields of modern science. Here, for the first time, we report an innovative scheme of harnessing the synergic action of both the second-order nonlinearity (2nd-NL) and the third-order nonlinearity (3rd-NL) in a single chirped periodically poled lithium niobate (CPPLN) nonlinear photonic crystal driven by a high-peak-power near-infrared (NIR) (central wavelength~1400 nm, energy~100 µJ per pulse) femtosecond pump laser to produce visible to near infrared (vis-NIR, 400-900 nm) supercontinuum white laser. The CPPLN involves a series of reciprocal-lattice bands that can be exploited to support quasiphase matching for simultaneous broadband second- and third-harmonic generations (SHG and THG) with considerable conversion efficiency. Due to the remarkable 3rd-NL which is due to the high energy density of the pump, SHG and THG laser pulses will induce significant spectral broadening in them and eventually generate bright vis-NIR white laser with high conversion efficiency up to 30%. Moreover, the spectral profile and overall chroma of output white laser can be widely modulated by adjusting the pump laser intensity, wavelength, and polarization. Our work indicates that one can deeply engineer the synergic and collective action of 2nd-NL and 3rd-NL in nonlinear crystals to accomplish high peak power, ultrabroadband vis-NIR white laser and hopefully realize the even greater but much more challenging dream of ultraviolet-visible-infrared full-spectrum laser.

3.
Theranostics ; 10(25): 11862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052250

RESUMO

[This retracts the article DOI: 10.7150/thno.14306.].

4.
Nanoscale ; 8(34): 15730-6, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27526632

RESUMO

Electromagnetic and chemical enhancement mechanisms are commonly used to account for single-molecule surface-enhanced Raman scattering (SM-SERS). Due to many practical limitations, however, the overall enhancement factor summed up from these two mechanisms is typically 5-6 orders of magnitude below the level of 10(14)-10(15) required for SM-SERS. Here, we demonstrate that the multiple elastic Rayleigh scattering of a molecule could play a critical role in further enhancing the Raman signal, when the molecule is trapped in a 2 nm gap between two Ag nanoparticles, pushing the overall enhancement factor close to the level needed for SM-SERS. As a universal physical process for all molecules interacting with light, we believe that Rayleigh scattering plays a pivotal and as yet unrecognized role in SERS, in particular, for enabling single-molecule sensitivity.

5.
Theranostics ; 6(4): 594-609, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941850

RESUMO

Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them.


Assuntos
Genes Reporter , Luciferases de Renilla/análise , Medições Luminescentes , Neoplasias/diagnóstico por imagem , Quinases da Família src/análise , Animais , Linhagem Celular Tumoral , Xenoenxertos , Luciferases de Renilla/genética , Camundongos , Análise de Sequência de DNA
6.
Phys Rev Lett ; 115(8): 083902, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340190

RESUMO

Nonlinear frequency conversion offers an effective way to expand the laser wavelength range based on birefringence phase matching (BPM) or quasi-phase-matching (QPM) techniques in nonlinear crystals. So far, efficient high-harmonic generation is enabled only via multiple cascaded crystals because of the extreme difficulty to simultaneously satisfy BPM or QPM for multiple nonlinear up-conversion processes within a single crystal. Here we report the design and fabrication of a chirped periodic poled lithium niobate (CPPLN) nonlinear crystal that offers controllable multiple QPM bands to support 2nd-8th harmonic generation (HG) simultaneously. Upon illumination of a mid-IR femtosecond pulse laser, we observe the generation of an ultrabroadband visible white light beam corresponding to 5th-8th HG with a record high conversion efficiency of 18%, which is high compared to conventional supercontinuum generation, especially in the HG parts. Our CPPLN scheme opens up a new avenue to explore and engineer novel nonlinear optical interactions in solid state materials for application in ultrafast lasers and broadband laser sources.

7.
Opt Express ; 22(23): 28653-61, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402106

RESUMO

We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3(LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by 3 × 10(5) in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to the SHG signal, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter interaction at nanoscale.


Assuntos
Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Modelos Teóricos , Nióbio/química , Análise Numérica Assistida por Computador , Óxidos/química , Processamento de Sinais Assistido por Computador , Prata/química
8.
Analyst ; 138(23): 7146-51, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24151634

RESUMO

A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations has been developed. The electrochemical characteristics of the sensor with added saccharides were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The bis-boronic acid modified electrode was both sensitive and selective for glucose.


Assuntos
Ácidos Borônicos/química , Eletrodos , Glucose/análise , Espectroscopia Dielétrica , Limite de Detecção
9.
Chemistry ; 18(26): 8190-200, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22615266

RESUMO

Four organic D-A-π-A-featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high-efficiency dye-sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron-withdrawing quinoxaline unit was incorporated between the donor and the π-conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time-dependent DFT. The incorporated low-band-gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon-to-electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co-adsorbent, successfully suppress the charge recombination from TiO(2) conduction band to I(3)(-) in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (V(oc)) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon-to-current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (J(sc)) of 15.65 mA cm(-2), a V(oc) value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm(-2)). Moreover, the overall efficiency remained at 97% of the initial value after 1000 h of visible-light soaking.

11.
Analyst ; 136(19): 4053-8, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21826288

RESUMO

A microgap impedance sensor with a 50 µm gap was developed for the determination of trace water in organic solvents by coating poly(dimethyldiallylammonium chloride) (PDMDAAC) and ferricyanide/ferrocyanide composite materials on indium tin oxide (ITO). The electrochemical properties of the composite materials were investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We observed that the impedance response of the sensor depended on the concentration of trace water in the organic solvents. Under optimized conditions, the linear range for the determination of trace water was 0-0.06% for chloroform (CHCl(3)), 0-0.10% for acetone (CH(3)COCH(3)), 0-0.12% for tetrahydrofuran (THF), and 0-0.10% for acetonitrile (CH(3)CN), and the detection limits were 0.65, 1.54, 0.61, and 1.72 ppm, respectively. The results obtained from the impedance sensors were comparable to those obtained using the traditional Karl Fischer method.


Assuntos
Acetona/química , Acetonitrilas/química , Clorofórmio/química , Furanos/química , Água/análise , Eletroquímica , Eletrodos , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA