Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bot Stud ; 63(1): 25, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008613

RESUMO

BACKGROUND: Rice is a key global food crop. Rice lodging causes a reduction in plant height and crop yield, and rice is prone to lodging in the late growth stage because of panicle initiation. We used two water irrigation modes and four fertilizer application intervals to investigate the relationship between lodging and various cultivation conditions over 2 years. RESULTS: Plant height data were collected and combined with aerial images, revealing that rice lodging was closely related to the nitrogen fertilizer content. The aerial images demonstrated that lodging mainly occurred in the fields treated with a high-nitrogen fertilizer, and analysis of variance revealed that plant height was signifi-cantly affected by nitrogen fertilizer. These results demonstrated that rice plant height in the booting stage was significantly positively correlated with the lodging results (r = 0.67) and nega-tively correlated with yield (r = - 0.46). If the rice plant height in the booting stage exceeded 70.7 cm and nitrogen fertilizer was continuously applied, according to the predicted growing curve of plant height, the plant would be at risk of lodging. Results showed more rainfall accumulated in the later stage of rice growth accompanied by strong instantaneous gusts, the risk of lodging in-creased. CONCLUSION: The results provide predictions that can be applied in intelligent production and lodging risk management, and they form the basis of cultivation management and response policies for each growth period.

3.
Sci Rep ; 12(1): 12870, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896690

RESUMO

Tea is a widely consumed beverage prepared using the fresh leaves of Camellia sinensis L. Tea plants are classified into small- and large-leaf varieties. Polyphenol oxidase (PPO), a crucial enzyme in tea manufacturing, catalyzes essential phenolic metabolites into different derivatives. To compare the molecular characteristics of CsPPO between cultivars, we cloned the full-length sequence of CsPPO cDNA from four representative tea cultivars in Taiwan. Amino acid sequence alignment analyses indicated that CsPPO is highly conserved. PPO exhibited similar enzymatic activity in different tea cultivars. Quantitative real-time polymerase chain reaction revealed no significant differences in the CsPPO transcript level between the small- and large-leaf varieties. However, tea harvested in summer and from low-altitude areas had a higher CsPPO transcript level than that harvested in winter and from high-altitude areas. Regulation of CsPPO by temperature was more significant in the small-leaf variety than in the large-leaf variety. The content of flavonoids and the expression of chalcone synthase, anthocyanidin synthase, and anthocyanidin reductase genes involved in the tea flavonoid biosynthesis pathway were higher in the large-leaf than in the small-leaf varieties, suggesting that the large-leaf variety had a higher antioxidative capacity than did the small-leaf variety. Our study compared the molecular properties of CsPPO between two tea varieties and clarified the physiological role of PPO in tea.


Assuntos
Camellia sinensis , Catecol Oxidase , Camellia sinensis/metabolismo , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Chá/genética , Chá/metabolismo
4.
Bot Stud ; 59(1): 11, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616373

RESUMO

BACKGROUND: Tea is one of the most popular beverages in the world. There are many secondary metabolites can be found in tea such as anthocyanins, proanthocyanidins, flavonols and catechins. These secondary metabolites in plants are proved to act protective components for human health effect. Plant hormone ethylene is considered to have an important role in regulation of plant development and signal transduction. This study evaluated the effect of ethylene signaling regulation in phenolic compounds in tea plants. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) enhanced contents of total catechin in treated oolong tea seedlings. RESULTS: The degree of epigallocatechin and epicatechin galloylation was increased after ACC treatment in oolong tea seedlings by high performance liquid chromatography determination. The contents of anthocyanins, flavonoids, and total polyphenol were higher after ACC treatment in comparison with control. Antioxidant enzyme such as catalase, superoxide dismutase, and total peroxidase decreased their antioxidant activities after ACC treatment, yet the activity of ascorbate peroxidase is increased. The ability of oxygen radical absorption and 2,2-diphenyl-1-picrylhydrazyl was used to evaluate the antioxidant activity, which was enhanced by ACC treatment. CONCLUSIONS: Taken together the results of this study demonstrate that the ethylene signaling is involved in modulation of secondary metabolites accumulation and antioxidant ability that to enhance the benefit of human health in tea products.

5.
Rice (N Y) ; 10(1): 42, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28861748

RESUMO

BACKGROUND: Understanding the responses of rice to environmental stresses such as unscheduled submergence is of pressing important owing to increasing severity of weather thought to arise from global climate change. When rice is completely submerged, different types adopt either a quiescence survival strategy (i.e., minimal shoot elongation) or an escape strategy (i.e., enhanced shoot elongation). Each strategy can prolong survival depending on the circumstances. While submergence responses have been studied in rice typical of lowland and flood-prone areas, few studies have explored the physiological and molecular properties of upland rice under submergence. Here, we use seedlings of the upland rice 'Tung Lu 3' ('TL3') to analyze physiological and molecular responses to submergence. We compare them with those of 'FR13A', a lowland rice that tolerates submergence by adopting the quiescence strategy. RESULTS: Plant height and distance between leaf sheaths, increased rapidly in 'TL3' under submergence. Although this indicated a strong escape strategy the seedlings remained totally underwater for the duration of the experiments. In contrast, 'FR13A' elongated much less. Consequently, after 4 days complete submergence followed by drainage, 'TL3' lodged much more severely than 'FR13A'. After 10 d complete submergence, 55% of 'TL3' seedlings survived compared to 100% in 'FR13A'. Chlorophyll a, b and total chlorophyll concentrations of the 2nd oldest leaves of 'TL3' were also significantly above those of 'FR13A' (but were lower than 'FR13A' in the 3rd oldest leaves) and less hydrogen peroxide accumulated in 'TL3'. Peroxidase activity in submerged 'TL3' was also greater than in 'FR13A' 1 day after submergence. Quantitative RT-PCR showed increased expression of sucrose synthase 1 and alcohol dehydrogenases 1 after 2 days complete submergence with significantly higher levels in 'TL3' compared to 'FR13A'. Expression was also higher in 'TL3' under non-submerged conditions. CONCLUSIONS: The upland rice line 'TL3' gave a stronger elongation response than 'FR13A' to complete submergence. This escape strategy is widely considered to prejudice survival when the plant remains totally submerged. However, contrary to expectations, 'TL3' survival rates were substantial although below those for 'FR13A' while physiological, biochemical and molecular parameters linked to adaptation differed in detail but appeared to be broadly comparable. These findings highlight that submergence tolerance is determine not only by the adoption of quiescence or escape strategies but maybe by metabolic and physiological properties unrelated to the underwater elongation rate.

6.
Nano Lett ; 13(5): 1920-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23574534

RESUMO

Via the integration of nanocomposites comprising I-III-VI semiconductor quantum dots (QDs) decorated onto a single SnO2 nanowire (NW), we successfully fabricate an ultrahigh-sensitivity and wide spectral-response photodetector. Under the illumination of He-Cd laser (325 nm) with the photon energy larger than the band gap of SnO2 nanowire, remarkably, an ultrahigh photocurrent gain up to 2.5 × 10(5) has been achieved, and an enhancement factor can reach up to 700% (cf. bare SnO2 NW) as light illumination onto the wire with an excitation intensity of 15 W/m(2). Also, a high gain value up to 1.3 × 10(5) is attained with the excited photon energy (488 nm) smaller than the band gap of SnO2 nanowire. Several key factors contribute to ultrahigh photocurrent gain and wide spectral response. First, the decorated quantum dot processes an inherent nature of a large absorption coefficient above its band gap. Furthermore, the single SnO2 nanowire provides an excellent conduction path for the photogenerated carriers as well as bears a large surface-to-volume ratio so that the coupling strength with quantum dots can be greatly enhanced. Most importantly, the spatial separation of photogenerated electrons and holes can be easily achieved due to the charge transfer arising from a type II band alignment between QDs and SnO2 NW. This work thus demonstrates a new approach in which by selectively decorating suitable QDs the photocurrent gain of SnO2 NWs can be greatly enhanced and extended to a wide spectral range of photoresponse previously inaccessible, providing a very useful guideline to create cheap, nontoxic, and highly efficient photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA