Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Omega ; 9(5): 5157-5174, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343988

RESUMO

Electrospun nanofibrous hybrid materials have several advantageous characteristics, including easy preparation, high porosity, and a large specific surface area. Meanwhile, they can be more suitable for colorimetric detection in environmental and food areas than organic materials due to the advantages of inorganic nanomaterials, i.e., stability, low toxicity, and durability. In addition to being able to immobilize nanomaterials to avoid particle aggregation, electrospinning hybrid materials also have the advantages of high specific surface area and high porosity, which is beneficial for constructing colorimetric sensors. This review mainly summarizes the fabrication methods of electrospun nanofibrous hybrid materials and the application of electrospun nanofibrous hybrid material based colorimetric sensors. First, the preparation strategies of electrospun nanofibrous hybrid materials were discussed. Then, the applications of the obtained electrospun nanofibrous hybrid materials in the colorimetric sensors for environmental molecules in the gas and liquid phase were further investigated. Finally, this review looks forward to the development prospects and challenges of electrospun hybrid materials in practical applications of colorimetric sensors in order to support the application of colorimetric sensors in practical detection.

2.
Adv Mater ; 36(8): e2307741, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37813568

RESUMO

Efficient catalyst design is crucial for addressing the sluggish multi-step sulfur redox reaction (SRR) in lithium-sulfur batteries (LiSBs), which are among the promising candidates for the next-generation high-energy-density storage systems. However, the limited understanding of the underlying catalytic kinetic mechanisms and the lack of precise control over catalyst structures pose challenges in designing highly efficient catalysts, which hinder the LiSBs' practical application. Here, drawing inspiration from the theoretical calculations, the concept of precisely controlled pre-lithiation SRR electrocatalysts is proposed. The dual roles of channel and surface lithium in pre-lithiated 1T'-MoS2 are revealed, referred to as the "electronic modulation effect" and "drifting effect", respectively, both of which contribute to accelerating the SRR kinetics. As a result, the thus-designed 1T'-Lix MoS2 /CS cathode obtained by epitaxial growth of pre-lithiated 1T'-MoS2 on cubic Co9 S8 exhibits impressive performance with a high initial specific capacity of 1049.8 mAh g-1 , excellent rate-capability, and remarkable long-term cycling stability with a decay rate of only 0.019% per cycle over 1000 cycles at 3 C. This work highlights the importance of precise control in pre-lithiation parameters and the synergistic effects of channel and surface lithium, providing new valuable insights into the design and optimization of SRR electrocatalysts for high-performance LiSBs.

3.
Angew Chem Int Ed Engl ; 62(45): e202313096, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728515

RESUMO

In eukaryotic cells, the membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) are found to interact intimately with membranous organelles (MOs). One major mode is the clustering of MOs by MLOs, such as the formation of clusters of synaptic vesicles at nerve terminals mediated by the synapsin-rich MLOs. Aqueous droplets, including complex coacervates and aqueous two-phase systems, have been plausible MLO-mimics to emulate or elucidate biological processes. However, neither of them can cluster lipid vesicles (LVs) like MLOs. In this work, we develop a synthetic droplet assembled from a combination of two different interactions underlying the formation of these two droplets, namely, associative and segregative interactions, which we call segregative-associative (SA) droplets. The SA droplets cluster and disperse LVs recapitulating the key functional features of synapsin condensates, which can be attributed to the weak electrostatic interaction environment provided by SA droplets. This work suggests LLPS with combined segregative and associative interactions as a possible route for synaptic clustering of lipid vesicles and highlights SA droplets as plausible MLO-mimics and models for studying and mimicking related cellular dynamics.


Assuntos
Organelas , Sinapsinas , Células Eucarióticas , Lipídeos
4.
J Phys Chem B ; 127(33): 7342-7351, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556838

RESUMO

The hydrolysis process of Al(H2O)63+ induced by hydroxyl ions (OH-) is significant to aluminum solution chemistry. Previous investigations of hydrolysis reactions have primarily relied on static calculations in an implicit solvent environment. Herein, we employ ab initio molecular dynamics (AIMD) to investigate the evolution process of Al(H2O)63+ under various local alkaline conditions in an explicit solvent environment. Our work demonstrates the effect of solvent water in hydrolysis reactions. Specifically, the stepwise hydrolysis reaction induced by hydroxyl ions involves water wire compression and concerted proton transfers. Dehydration reactions occur when the number of hydroxyl ligands attached to the aluminum ion (Al3+) equals or exceeds three. Moreover, the Al(H2O)n(OH)3 species exhibit unique hydrolysis and dehydration reaction characteristics compared to other species. The geometrically stable aluminum monomers determined by AIMD are Al(H2O)5(OH)12+, Al(H2O)4(OH)2+, Al(H2O)1(OH)3, and Al(OH)4-. In addition, the topological analysis analyzes the interaction between Al3+ and coordinated H2O in different configurations, indicating the weakest interaction appearing in Al(H2O)n(OH)3 species.

5.
ACS Appl Mater Interfaces ; 15(25): 30360-30371, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311009

RESUMO

The development of protective fabrics that are capable of capturing and detoxifying a wide range of lethal chemical warfare agents (CWAs) in an efficient way is of great importance for individual protection gears/clothing. In this work, unique metal-organic framework (MOF)-on-MOF nanofabrics were fabricated through facile self-assembly of UiO-66-NH2 and MIL-101(Cr) crystals on electrospun polyacrylonitrile (PAN) nanofabrics and exhibited intriguing synergistic effects between the MOF composites on the detoxification of both nerve agent and blistering agent simulants. MIL-101(Cr), although not catalytic, facilitates the enrichment of CWA simulants from solution or air, thereby delivering a high concentration of reactants to catalytic UiO-66-NH2 coated on its surface and providing an enlarged contact area for CWA simulants with the Zr6 nodes and aminocarboxylate linkers compared to solid substrates. Consequently, the as-prepared MOF-on-MOF nanofabrics showed a fast hydrolysis rate (t1/2 = 2.8 min) for dimethyl 4-nitrophenylphosphate (DMNP) in alkaline solutions and a high removal rate (90% within 4 h) of 2-(ethylthio)-chloroethane (CEES) under environmental conditions, considerably surpassing their single-MOF counterparts and the mixture of two MOF nanofabrics. This work demonstrates synergistic detoxification of CWA simulants using MOF-on-MOF composites for the first time and has the potential to be extended to other MOF/MOF pairs, which provides new ideas for the development of highly efficient toxic gas-protective materials.

6.
ACS Appl Mater Interfaces ; 15(5): 6848-6858, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36693011

RESUMO

Alumina aerogels are desirable for lightweight and highly efficient thermal insulation. However, they are typically constrained by brittleness and structural collapse at high temperatures. The manufacture of alumina aerogels with ultralow thermal conductivity and excellent thermal stability at high temperatures beyond 1300 °C is still challenging. Herein, alumina aerogels with superior ultrahigh-temperature-resistant and thermal insulation were successfully prepared by assembling the α-Al2O3 nanosheets with silica sols as the high-temperature binders. Benefiting from the generation of the mullite-covered alumina biphasic structure, the α-Al2O3 nanosheet-based aerogels (ANSAs) exhibit excellent thermal and chemical stabilities even after calcination at as high as 1600 °C. The ANSAs had a low thermal conductivity (0.029 W·m-1·K-1 at room temperature), structural stability with a measured compressive strength of 0.6 MPa, and good thermal shock resistance. Furthermore, the 2D α-alumina@mullite core-shell sheets were also prepared as assembly units to construct aerogels (AMSAs). This core-shell structure can improve temperature resistance through inter-lattice suppression under continuous energy input at high temperatures. The AMSAs have a linear shrinkage of only 2.7% after calcination at 1600 °C for 30 min, further improving the temperature resistance, making them an ideal super-insulating material for applications at extremely high temperatures.

7.
ACS Appl Mater Interfaces ; 15(1): 1265-1275, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36594244

RESUMO

The development of functional materials that can detoxify multiple chemical warfare agents (CWAs) at the same time is of great significance to cope with the uncertainty of CWA use in real-world situations. Although many catalysts capable of detoxifying CWAs have been reported, there is still a lack of effective means to integrate these catalytic-active materials on practical fibers/fabrics to achieve effective protection against coexistence of a variety of CWAs. In this work, by a combination of electrospinning and in situ solvothermal reaction, PAN@Zr(OH)4@MOF-808 nanofiber membranes were prepared for detoxification of both nerve agent and blistering agent simulants dimethyl 4-nitrophenyl phosphate (DMNP) and 2-chloroethyl ethyl sulfide (CEES). Under the catalytic effect of the MOF-808 component, DMNP hydrolysis with a half-life as short as 1.19 min was achieved. Meanwhile, an 89.3% CEES removal rate was obtained within 12 h by adsorption and catalysis of MOF-808 and Zr(OH)4 components at ambient conditions, respectively. PAN@Zr(OH)4@MOF-808 nanofiber membranes also showed a superior blocking effect on CEES compared to bare PAN and PAN@Zr(OH)4 nanofiber membranes. Simultaneous protection against DMNP and CEES showed effective inhibition of both simulants for at least 2 h. The preparation method also imparted intrinsically good interfacial adhesion between the components, contributing to the excellent recycling stability of PAN@Zr(OH)4@MOF-808 nanofiber membranes. Therefore, the prepared composite nanofabrics have great application potential, which provides a new idea for the construction of broad-spectrum protective detoxification materials.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Agentes Neurotóxicos , Sulfetos
8.
ACS Appl Mater Interfaces ; 14(17): 19409-19418, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446540

RESUMO

Solar-driven photothermal interfacial evaporation is considered as one of the most promising strategies in seawater desalination and wastewater treatment. In desalination, evaporation efficiency and salt resistance are regarded as two inter-constraint measures. Thus, it is still challenging to fabricate solar evaporators with both high evaporation efficiency and excellent salt resistance. In the present work, a self-floating Janus sponge composed of hydrophobic carbon black (CB) coating and hydrophilic porous thermoplastic polyurethane-carbon nanotube (TPC) nanofibrous substrate (TPC@CB) is fabricated via a simple electrospinning and gas templating expansion method. Attributing to the unique trilaminar functional architecture: the upper superhydrophobic solar-absorption coating, the intermediate ultrathin heat localization layer, and the lower cellular thermal insulation layer, the Janus TPC@CB sponge exhibits high evaporation efficiency (1.80 kg m-2 h-1 with an energy efficiency of 97.2% under 1.0 solar irradiation) and outstanding salt resistance ability. Moreover, zero liquid discharge in salt-containing wastewater treatment is realized using the Janus TPC@CB sponge as a solar-driven photothermal medium. This work provides a promising approach to seawater desalination and wastewater treatment.

9.
Adv Sci (Weinh) ; 9(16): e2200529, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35343099

RESUMO

Seawater electrolysis not only affords a promising approach to produce clean hydrogen fuel but also alleviates the bottleneck of freshwater feeds. Here, a novel strategy for large-scale preparing spinel Nix Mn3-x O4 solid solution immobilized with iridium single-atoms (Ir-SAs) is developed by the sol-gel method. Benefitting from the surface-exposed Ir-SAs, Ir1 /Ni1.6 Mn1.4 O4 reveals boosted oxygen evolution reaction (OER) performance, achieving overpotentials of 330 and 350 mV at current densities of 100 and 200 mA cm-2 in alkaline seawater. Moreover, only a cell voltage of 1.50 V is required to reach 500 mA cm-2 with assembled Ir1 /Ni1.6 Mn1.4 O4 ‖Pt/C electrode pair under the industrial operating condition. The experimental characterizations and theoretical calculations highlight the effect of Ir-SAs on improving the intrinsic OER activity and facilitating surface charge transfer kinetics, and evidence the energetically stabilized *OOH and the destabilized chloride ion adsorption in Ir1 /Ni1.6 Mn1.4 O4 . This work demonstrates an effective method to produce efficient alkaline seawater electrocatalyst massively.

10.
Adv Sci (Weinh) ; 9(6): e2104121, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34962109

RESUMO

Various smart windows with dynamic modulation of the light transmittance have been developed rapidly in recent years. However, current design of the smart windows can only modulate the indoor solar irradiation instead of effectively utilize them. Here, a solar water-heating (SWH) smart window is proposed by the integration of the traditional electrochromic window and the water flow system, which can not only provide dynamic daylight modulation but also harvest the solar energy and store them by heating water. In the SWH window, the reversible metal electrodeposition (RME) not only provides daylight modulation but also provides metal layer working as a flat-plate solar collector for energy harvesting. Compared with traditional electrochromic windows, the SWH window with a water flow system can more effectively modulate the indoor temperature, owing to the significantly enhanced tunability of the thermal irradiation from the window. Compared with water-flow windows, the RME provide a metallic layer for efficient light harvesting, up to 42% solar energy can be effectively harvested and stored as hot water. Such an SWH smart window is promising to reduce the heating, lighting, and air conditioning energy consumption, which may bring new insights in the design of the next-generation green buildings.

11.
Chem Commun (Camb) ; 57(34): 4138-4141, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33908464

RESUMO

Photocatalytic catalysts with a large specific surface area generally can not only supply more active sites but also facilitate the surface charge separation process. Here, we present a facile method to synthesize highly porous polymeric carbon nitride by an acid etching process. Benefitting from the porous structure and enlarged specific surface area, CN-0.25H reveals an enhanced photocatalytic hydrogen evolution rate. Experimental and computational results suggest that the improved surface charge separation process mainly accounts for the enhanced photocatalytic activity, illustrating the importance of the surface area for a CN photocatalyst.

12.
Small ; 16(50): e2005704, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230921

RESUMO

The current investigation in magnetism in 2D materials offers new opportunities for studying spintronics at low dimensions. Here, reversible photoinduced room temperature magnetization in 2D Bi2 WO6 nanosheets is reported for the first time. Compared with the original state, the ultraviolet (UV)-illuminated Bi2 WO6 nanosheets show a yellow-green color change and significantly enhanced magnetic signals (saturated magnetization (Ms ) increased from 0.002 to 0.12 emu g-1 ). X-ray photoelectron spectroscopy (XPS) results show unexpected W reduction (W6+ to W5+ /W4+) and Bi oxidation (Bi3+ to Bi5+ ) upon UV illumination for the Bi2 WO6 nanosheets, indicating a photoexcited Bi to W charge transfer. Density functional theory (DFT) calculations indicate spontaneous spin polarization of the Bi2 WO6 nanosheets in the excited metastable state. Meanwhile, thicker Bi2 WO6 nanoplates or nanoparticles show no enhanced magnetic signals upon UV illumination. UV illumination of the thin Bi2 WO6 nanosheets can induce the formation of internal electric field (polarization), leading to structural deformation/lattice distortion (photostriction). The photoexcited electrons are trapped in the WO6 layers while the photogenerated holes are trapped in the Bi2 O2 layers, leading to spin polarization and enhance the magnetization. The research may bring some new insights in tuning the magnetic properties of 2D nanostructures.

13.
Nat Commun ; 11(1): 3078, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555382

RESUMO

The exploration of photoanode materials with high efficiency and stability is the eternal pursuit for the realization of practically solar-driven photoelectrochemical (PEC) water splitting. Here we develop a deficient ternary metal sulfide (CdIn2S4) photoanode, and its PEC performance is significantly enhanced by introducing surface sulfur vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs. RHE and 1 Sun with an applied bias photon-to-current efficiency of 2.49% at 0.477 V vs. RHE. The experimental characterizations and theoretical calculations highlight the enhanced effect of surface sulfur vacancies on the interfacial charge separation and transfer kinetics, which also demonstrate the restrained surface states distribution and the transformation of active sites after introducing surface sulfur vacancies. This work may inspire more excellent work on developing sulfide-based photoanodes.

14.
ACS Appl Mater Interfaces ; 12(16): 18437-18445, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32202409

RESUMO

Self-detoxifying fabrics are desirable forms for protection against chemical warfare agents (CWAs). Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the fastest catalysts for nerve-agent hydrolysis, but there is still a lack of reliable methods to integrate them onto fibrous supports, and instantaneous detoxification remains challenging for MOF/fiber composites. Herein, we report a bio-inspired polydopamine (PDA)-mediated strategy for the preparation of Zr-MOF (UiO-66-NH2)-coated nanofiber membranes, which are capable of photothermally catalyzing the degradation of CWA simulants. UiO-66-NH2 nanocrystalline coating with high mass loading, perfect coverage, and good adhesion is readily formed on polyamide (PA)-6 nanofibers with the precoated PDA layer. The prepared PA-6@PDA@UiO-66-NH2 nanofibers display almost an order of magnitude higher turnover frequency (TOF) for the hydrolysis of the nerve agent simulant dimethyl 4-nitrophenylphosphate (DMNP) when irradiated under simulated solar light, with a half-life of only 0.5 min. Such a hydrolysis rate is significantly higher compared to that of the corresponding UiO-66-NH2 powder and UiO-66-NH2/fiber composites reported so far. This strategy may be easily generalized to other MOF/fiber pairs to achieve even higher performance and opens up new opportunities for solar photothermal catalysis in CWA protection.

15.
ACS Appl Mater Interfaces ; 11(36): 33062-33073, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419108

RESUMO

Rational design and construction of interface heterostructures, which can simultaneously accelerate the photoinduced carrier separation and enhance the surface water oxidation kinetics, is of great necessity for photoelectrochemical (PEC) water oxidation. Herein, we report a new strategy for boosting the PEC water oxidation by introducing Schottky junction and semiconductor/water oxidation cocatalysts (SC/WOCs) junction into the TaON photocatalyst. Compared with pristine TaON photoanode, the hierarchical TaON/Au/ZnCo-LDH (LDH = layered double hydroxide) photoanode reveals a cathodic shift of 156 mV for the onset potential and 17.3-fold photocurrent density enhancement at 1.23 V vs RHE, as well as improved long-term stability. Diagnostic efficiencies of the TaON/Au/ZnCo-LDH photoanode demonstrate that the enhanced PEC performance is not dominated by surface electrochemical water oxidation kinetics but largely contributed by the improved charge separation and transfer, indicative of synergistic effects of Au and ZnCo-LDH. Theoretical calculations further reveal that the midgap states introduced by Au and ZnCo-LDH in TaON electronic structures bring about photoexcited electrons concentrated on TaON, while holes accumulated on ZnCo-LDH to achieve efficiently spatial charge separation, which is responsible for the boosted PEC water oxidation performance. The present work highlights the importance and elucidates the mechanism of interface heterojunction in PEC water oxidation, which can provide an efficient approach to design and fabricate a new structural photoanode.

16.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960518

RESUMO

Responsive polymer-based sensors have attracted considerable attention due to their ability to detect the presence of analytes and convert the detected signal into a physical and/or chemical change. High responsiveness, fast response speed, good linearity, strong stability, and small hysteresis are ideal, but to gain these properties at the same time remains challenging. This paper presents a facile and efficient method to improve the photonic sensing properties of polymeric gels by using non-close-packed monolayer colloidal crystals (ncp MCCs) as the template. Poly-(2-vinyl pyridine) (P2VP), a weak electrolyte, was selected to form the pH-responsive gel material, which was deposited onto ncp MCCs obtained by controlled O2 plasma etching of close-packed (cp) MCCs. The resultant ultrathin photonic polymer gel film (UPPGF) exhibited significant improvement in responsiveness and linearity towards pH sensing compared to those prepared using cp MCCs template, achieving fast visualized monitoring of pH changes with excellent cyclic stability and small hysteresis loop. The responsiveness and linearity were found to depend on the volume and filling fraction of the polymer gel. Based on a simple geometric model, we established that the volume increased first and then decreased with the decrease of template size, but the filling fraction increased all the time, which was verified by microscopy observations. Therefore, the responsiveness and linearity of UPPGF to pH can be improved by simply adjusting the etching time of oxygen plasma. The well-designed UPPGF is reliable for visualized monitoring of analytes and their concentrations, and can easily be combined in sensor arrays for more accurate detection.

17.
ACS Appl Mater Interfaces ; 11(8): 7936-7945, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30722660

RESUMO

Rational design and preparation of electrocatalyst with optimal component and interfaces, which can work well for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, are of great importance in practical water splitting. Herein, a multiscale structure surface engineering approach to construct Co(OH)2/Ag/FeP hybrid as efficient electrocatalysis for water splitting in alkaline media is reported. By optimizing the component ratio and engineering interfacial structure, the Co(OH)2/Ag/FeP hybrid eletrocatalyst exhibits promoted HER and OER activity as well as stability in alkaline media, achieving an overpotential of 118 and 236 mV at a current density of 10 mA cm-2, respectively. Further experimental characterizations demonstrate the electron structure changes in Co(OH)2/Ag/FeP hybrid after constructing the interfaces, which is beneficial to generate low-charge state Fe2+ and high-oxidized Co3+/4+. The first-principle calculations reveal that the dissociation of H2O at the interface region is energetically favorable, which is responsible for the enhanced HER and OER activity. Furthermore, two-electrode alkaline water electrolyzer constructed by Co(OH)2/Ag/FeP hybrid electrocatalysts only requires a voltage of 1.56 V to afford a current density of 10 mA cm-2, which is superior to the commercial Pt/C-IrO2 catalytic couple and makes it a promising material to be employed as effective bifunctional catalysts for overall water splitting.

18.
ACS Appl Mater Interfaces ; 11(8): 7927-7935, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30688436

RESUMO

Self-detoxifying materials capable of both capture and destruction of chemical warfare agents (CWAs) are highly desirable for efficient personal protection and safe handling of contaminated materials. Developing new strategies to improve CWA removal efficiency of these materials is highly relevant to CWA purification technology. Herein, we present novel photothermally enhanced catalytic detoxification of CWA simulants and its application in self-detoxifying gas filters. The material design features a well-defined core-shell nanostructure (CSN) consisting of an inner photothermal material and an outer microporous catalyst. As a demonstration, the CSN was obtained by growing a Zr-based metal-organic framework (MOF), UiO-66-NH2, onto bioinspired dopamine-melanin (Dpa) nanoparticles via heterogeneous nucleation induced by metal chelation. The resultant Dpa@UiO-66-NH2 CSN has increased the turnover frequency (TOF) of a nerve agent simulant, 4-nitrophenyl phosphate (DMNP), by 2.9- and 1.7-fold in the presence of NIR laser and simulated solar light, respectively. Further incorporation of Dpa@UiO-66-NH2 CSNs into polymer fibers by electrospinning has led to an even greater photothermal enhancement effect (5.8- and 3.2-fold TOF increase), achieving a faster DMNP degradation rate than the corresponding pure MOF powder for the first time and the shortest half-life of DMNP (1.8 min) among reported MOF-based self-detoxifying fabrics. The significant photothermal enhancement in the detoxification ability of Dpa@UiO-66-NH2 fabrics is attributed to the instantaneous heat transfer from the photothermal core to the catalytic shell and effective heat retention enabled by the surrounding polymer matrix. The Dpa@UiO-66-NH2 fabrics can be easily prepared on a large scale and demonstrate efficient protection against DMNP aerosols as stand-alone gas filters. This strategy of photothermally enhanced catalytic detoxification can be feasibly extended to other catalytic detoxification systems and holds promise for next-generation gas masks.


Assuntos
Substâncias para a Guerra Química/química , Melaninas/química , Estruturas Metalorgânicas/química , Catálise , Raios Infravermelhos , Luz , Nanopartículas/química , Porosidade , Temperatura , Zircônio/química
19.
ChemSusChem ; 11(23): 4150-4155, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30303629

RESUMO

Co9 S8 crystals can catalyze the growth of thin-walled graphite microtubes (GMTs) through a catalytic chemical vapor deposition (CCVD) process using thiourea as the precursor. The growth of GMTs follows a tip-growth mechanism with tube diameters up to a few micrometer. The hollow interiors of the GMTs are filled with carbon nanotubes and wrinkled graphene layers, which form a unique nanotube/graphene-in-microtube structure. As-formed GMTs are N,S-codoped with lots of Co9 S8 nanoparticles encapsulated in their inner walls. These GMTs are room-temperature ferromagnets and can be loaded on Ni foams to work as binder-free electrocatalysts with low overpotential (310 mV at 50 mA cm-2 for the oxygen evolution reaction (OER) and 284 mV at 50 mA cm-2 for the hydrogen evolution reaction (HER)) and long-term durability (continuous work for 120 h without loss in performance). Our research proves that metal sulfides can catalyze the growth of graphite microtubes and as-formed GMTs may potentially be used as functional building blocks to construct new kinds of electrochemical devices for various energy-related applications.

20.
ACS Appl Mater Interfaces ; 10(24): 20396-20403, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29806452

RESUMO

Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA