Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Colloid Interface Sci ; 673: 70-79, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38875799

RESUMO

Among battery technologies, aqueous zinc ion batteries (AZIBs) have hit between the eyes in the next generation of extensive energy storage devices due to their outstanding superiority. The main problem that currently restricts the development of AZIBs is how to obtain stable Zn anodes. In this study, taking the improvement of a series of problems caused by the physically attached artificial interfacial layer on Zn anode as a starting point, a nanosheet morphology of ZnSiO3 (denoted as ZnSi) is constructed by self-growth on Zn foil (Zn@ZnSi) by a simple hydrothermal reaction. The ZnSi nano-interfacial layer effectively slices the surface of the Zn foil into individual microscopic interfacial layers, constructing abundant pores. The nanosheets of Zn@ZnSi construct rich nanoscale Zn2+ transport channels, which provide higher electron and ion transport paths, thus achieving the effect of effectively homogenizing the electric field distribution and decreasing the local current density. Thanks to its inherent and structural properties, the Zn@ZnSi anode has a high specific capacity and good cycling stability compared with the Zn electrode. The lifetime of the Zn@ZnSi//Zn@ZnSi symmetric cell is much higher than that of the Zn//Zn symmetric cell at 1 mA cm-2. The capacity of the Zn@ZnSi//NH4V4O10 full cell can still reach 98 mAh g-1 after 1000 cycles at 1 A/g. The low-cost and scalable synthesis of ZnSi nano-interfacial layer on Zn is expected to provide new perspectives on interfacial engineering for Zn anodic protection.

2.
Adv Sci (Weinh) ; : e2402632, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923328

RESUMO

Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.

3.
Chemosphere ; 361: 142568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851510

RESUMO

Biotrickling filter (BTF) is often used for purification of waste gas from swine houses, with vital information still needed regarding interaction effects among multiple gas pollutants removal and also the formation of byproducts especially nitrous oxide (N2O, a strong greenhouse gas) due to the relative high NH3 concentration level compared to other gases. In this study, gas removal and N2O production were compared between two BTFs, where the inlet gas of BTF-1 contained NH3 and H2S while p-cresol was additionally supplied to BTF-2. At inlet load (IL) between 3.67 and 18.91 g m-3 h-1, removal efficiencies of NH3 exceeded 95% for both BTFs. As alternative strategy, adding thiosulfate improved H2S removal. Interestingly, presence of p-cresol to some extent promoted H2S removal at IL of 0.56 g m-3 h-1possibly due to effect on pH value of circulating solution. Similar to NH3, removal efficiencies of p-cresol were higher than 95% at an average IL of 2.98 g m-3 h-1. Gas residence time, pH of circulating solution and inlet loading were identified as key factors affecting BTF performance, but the response of individual gas compound to these factors was not consistent. Overall, p-cresol enhanced N2O generation although the effects were not always significant. High-throughput sequencing results showed that Proteobacteria accounted for the largest proportion of relative abundance and BTF-2 had much richer microbial diversity compared to BTF-1. Thermomonas, Comamonas, Rhodanobacter and other bacterial genus capable of denitrification were detected in both BTFs, and their corresponding abundances in BTF-2 (10.9%, 8.7% and 5.2%) were all greater than those in BTF-1 (0.4%, 0.3% and 2.0%), indicating that more denitrification may occur within BTF-2 and higher N2O could have been generated. This study provided evidence that organic gas components, served as carbon source, may increase the N2O production from BTF when treating waste gases containing NH3.


Assuntos
Poluentes Atmosféricos , Amônia , Cresóis , Sulfeto de Hidrogênio , Óxido Nitroso , Amônia/metabolismo , Cresóis/metabolismo , Óxido Nitroso/metabolismo , Sulfeto de Hidrogênio/metabolismo , Poluentes Atmosféricos/metabolismo , Suínos , Animais , Filtração/métodos , Biodegradação Ambiental
4.
Bioresour Technol ; 403: 130870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777234

RESUMO

Research on the stability evaluation of biotrickling filters (BTFs) under harsh conditions and the bacterial adaptation process still needs to be improved. Herein, BTFs with polypropylene plastic (PP) and ceramic raschig rings (CRR) were investigated for a better understanding of the biodegradation of ammonia (NH3), hydrogen sulfide (H2S), and dimethyl sulfide (DMS). The results showed an excellent performance in removal efficiency (RE) for NH3 (91.6 %-99.9 %), H2S (RE: 55.3 %-99.5 %), and DMS (RE: 10.6 %-99.9 %). It was found that a more apparent positive correlation between N2O emission and pressure drop in CRR BTF (R2 = 0.92) than in PP BTF (R2 = 0.79) (P < 0.01). Low temperature promotes an increase in the abundance ofComamonasandBacillus. The polysaccharides in PP and CRR reactors decreased by 78.6 % and 68.1 % when temperature reduced from 25℃ to 8℃. This work provides a novel insight into understanding bacterial survival under harsh BTF environments.


Assuntos
Amônia , Biodegradação Ambiental , Filtração , Odorantes , Amônia/metabolismo , Filtração/métodos , Reatores Biológicos , Sulfeto de Hidrogênio/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Enxofre/metabolismo , Cerâmica , Temperatura
5.
J Colloid Interface Sci ; 671: 78-87, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38795536

RESUMO

Aqueous ammonium ion batteries (AAIBs) are garnering increasing attention due to their utilization of abundant resources, cost-effectiveness, safety, and unique energy storage mechanism. The pursuit of high-performance cathode materials has become a pressing issue. In this study, we propose and synthesize ferrocene-embedded hydrated vanadium pentoxide (Fer/VOH) for implementation in AAIBs. The inclusion of ferrocene serves to expand the interlayer spacing, mitigate interlayer forces, and introduce the electron-rich environment characteristic of ferrocene. This augmentation facilitates the creation of additional oxygen vacancies, substantially enhancing the capacity and efficiency of ammonium ion storage. Notably, our investigation reveals that the incorporation of ferrocene attenuates the hydrogen bonding interactions associated with ammonium ions, rendering them more amenable to the interlayer embedding and release processes. Building upon these advantages, Fer/VOH exhibits a specific capacity of 313 mAh/g at a current density of 0.2 A/g, representing the highest reported performance among vanadium oxides utilized in AAIBs to date. Even after 2000 charge/discharge cycles at a current density of 2 A/g, Fer/VOH maintains a reversible specific capacity of 89 mAh/g, with a capacity retention rate of 54.8%. This study confirms the viability of Fer/VOH as a cathode material for AAIBs and offers a novel approach to enhancing the electrical conductivity and diminishing the hydrogen bonding forces in vanadium oxide intercalation through the embedding of electron-rich species and positronic groups.

6.
Langmuir ; 40(22): 11684-11694, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781129

RESUMO

The exceptional hydrophobicity and antifouling properties of polydimethylsiloxane (PDMS) composites have attracted extensive interest as a result of low surface energy. However, PDMS composites are hardly bound by common primers, greatly limiting their practical applications. To address this issue, an EPMS/VTMS (EV) primer synthesized by hydrolytic polycondensation of 3-[(2,3)-epoxypropoxypropyl]methyldiethoxysilane (EPMS) and vinyltrimethoxysilane (VTMS) in acidic conditions is proposed. Interestingly, the EV primer exhibits exceptional reactivity, self-healing capabilities, and strong adhesion to various substrates, including metals, plastics, and glass. The bonding aluminum plates are easily debonded by immersion in water without any residue left. Subsequently, the EV primer has been applied to the interface between silicone leather and the PDMS composite. Results show that the bonding strength for the silicone leather coated with the EV/PDMS composite is 16 times higher than that of the silicone leather modified with the PDMS composite. Meanwhile, the modified silicone leather exhibits impressive antifouling performance, including aqueous and oily stains, appreciable breathability, and excellent wear resistance, even if suffering from 20 000 cycles of abrasion. These excellent advantages for the modified silicone leather should be attributable to the synergistic effect of the EV primer and the PDMS composite. These findings pave the way to develop an ecofriendly debonding primer for PDMS composites, greatly facilitating applications of silicone leather.

7.
Mater Horiz ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747363

RESUMO

Silicon nanocrystals (SiNCs) have attracted considerable attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, little attention has been paid to fluorescence anti-counterfeiting applications based on lipophilic silicon nanocrystals. Moreover, it is also a challenge to fabricate aging-resistant anti-counterfeiting coatings based on silicon nanocrystals. Herein, this paper presents a demonstration of aging-resistant fluorescent anti-counterfeiting coatings based on red fluorescent silicon nanocrystals. In this work, lipophilic silicon nanocrystals (De-SiNCs) with red fluorescence were prepared first by thermal hydrosilylation between hydrogen-terminated silicon nanocrystals (H-SiNCs) and 1-decene. Subsequently, a new SiNCs/PDMS coating (De-SiNCs/DV) was fabricated by dispersing De-SiNCs into reinforcing PDMS composites with vinyl-capped silicone resin. Interestingly, the De-SiNCs/DV composites exhibit superior transparency (up to 85%) in the visible light range, outstanding fluorescence stabilities with an average lifetime of 20.59 µs under various conditions including acidic/alkaline environments, different organic solvents, high-humidity environments and UV irradiation. Meanwhile, the encapsulation of De-SiNCs is beneficial to enhancing the mechanical properties and thermal stability of De-SiNCs/DV composites. Additionally, the De-SiNCs/DV coating exhibits an excellent anti-counterfeiting effect on cotton fabrics when used as an ink in screen-printing. These findings pave the way for developing innovative flexible multifunctional anti-counterfeiting coatings in the future.

8.
J Colloid Interface Sci ; 669: 2-13, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38703578

RESUMO

Aqueous nonmetallic ion batteries have garnered significant interest due to their cost-effectiveness, environmental sustainability, and inherent safety features. Specifically, ammonium ion (NH4+) as a charge carrier has garnered more and more attention recently. However, one of the persistent challenges is enhancing the electrochemical properties of vanadium dioxide (VO2) with a tunnel structure, which serves as a highly efficient NH4+ (de)intercalation host material. Herein, a novel architecture, wherein carbon-coated VO2 nanobelts (VO2@C) with a core-shell structure are engineered to augment NH4+ storage capabilities of VO2. In detail, VO2@C is synthesized via the glucose reduction of vanadium pentoxide under hydrothermal conditions. Experimental results manifest that the introduction of the carbon layer on VO2 nanobelts can enhance mass transfer, ion transport and electrochemical kinetics, thereby culminating in the improved NH4+ storage efficiency. VO2@C core-shell composite exhibits a remarkable specific capacity of ∼300 mAh/g at 0.1 A/g, which is superior to that of VO2 (∼238 mAh/g) and various other electrode materials used for NH4+ storage. The NH4+ storage mechanism can be elucidated by the reversible NH4+ (de)intercalation within the tunnel of VO2, facilitated by the dynamic formation and dissociation of hydrogen bonds. Furthermore, when integrated into a full battery with polyaniline (PANI) cathode, the VO2@C//PANI full battery demonstrates robust electrochemical performances, including a specific capacity of ∼185 mAh·g-1 at 0.2 A·g-1, remarkable durability of 93 % retention after 1500 cycles, as well as high energy density of 58 Wh·kg-1 at 5354 W·kg-1. This work provides a pioneering approach to design and explore composite materials for efficient NH4+ storage, offering significant implications for future battery technology enhancements.

9.
Biodegradation ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619793

RESUMO

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.

10.
J Environ Manage ; 354: 120445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412732

RESUMO

In this study, the effect of external agricultural phytohormones (mixed phytohormones) addition (1.0, 5.0, 10.0, and 20.0 mg L-1) on the growth performance, lipid productivity, and sedimentation efficiency of Chlorella pyrenoidosa cultivated in saline wastewater was investigated. Among the different concentrations evaluated, the highest biomass (1.00 g L-1) and lipid productivity (11.11 mg L-1 d-1) of microalgae were obtained at 10.0 mg L-1 agricultural phytohormones addition. Moreover, exogenous agricultural phytohormones also improved the sedimentation performance of C. pyrenoidosa, which was conducive to the harvest of microalgae resources, and the improvement of sedimentation performance was positively correlated with the amount of agricultural phytohormones used. The promotion of extracellular polymeric substances synthesis by phytohormones in microalgal cells could be considered as the reason for its promotion of microalgal sedimentation. Transcriptome analysis revealed that the addition of phytohormones upregulated the expression of genes related to the mitogen-activated protein kinase (MAPK)-mediated phytohormone signaling pathway and lipid synthesis, thereby improving salinity tolerance and lipid production in C. pyrenoidosa. Overall, agricultural phytohormones provide an effective and inexpensive strategy for increasing the lipid productivity and sedimentation efficiency of microalgae cultured in saline wastewater.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Reguladores de Crescimento de Plantas , Lipídeos , Microalgas/metabolismo , Biomassa
11.
Water Res ; 252: 121229, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324989

RESUMO

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Assuntos
Carbono , Poluentes Químicos da Água , Ibuprofeno , Metais/química , Oxirredução , Água , Eletrodos , Poluentes Químicos da Água/química
12.
Chemosphere ; 350: 141105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171394

RESUMO

The efficient biodegradation of volatile chlorinated hydrocarbons using microbial fuel cells (MFCs) offers a feasible approach for purifying waste gas and alleviating energy crises. However, power generation is limited by poor pollutant biodegradation and slow electron transfer. The bifunctional bacterium Acinetobacter sp. HY-99C was screened and used to improve the performance of a conventional MFC. The inoculation of strain HY-99C into the conventional MFC promoted the formation of a compact biofilm with high metabolic activity and an enriched bifunctional genus (Acinetobacter), which resulted in the accelerated decomposition of chlorinated aromatic compounds into biodegradable organic acids. This led to efficient chlorobenzene removal and power generation from the MFC, with a chlorobenzene elimination capacity of 70.8 g m-3 h-1 and power density of 89.6 mW m-2, which are improved over those of previously reported MFCs. This study provides novel insights into enhancing pollutant removal and power generation in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Gases , Bactérias , Clorobenzenos , Eletrodos , Eletricidade
13.
Appl Microbiol Biotechnol ; 108(1): 159, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252324

RESUMO

Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.


Assuntos
Biofilmes , Clorobenzenos , Adesão Celular , Cinética , Membrana Celular , Gases
14.
Adv Mater ; 36(21): e2312220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288877

RESUMO

Cellulose nanofibrils (CNFs) are supramolecular assemblies of cellulose chains that provide outstanding mechanical support and structural functions for cellulosic organisms. However, traditional chemical pretreatments and mechanical defibrillation of natural cellulose produce irreversible surface functionalization and adverse effects of morphology of the CNFs, respectively, which limit the utilization of CNFs in nanoassembly and surface functionalization. Herein, this work presents a facile and energetically efficient surface engineering strategy to completely exfoliate cellulose elementary fibrils from various bioresources, which provides CNFs with ultrahigh aspect ratios (≈1400) and reversible surface. During the mild process of swelling and esterification, the crystallinity and the morphology of the elementary fibrils are retained, resulting in high yields (98%) with low energy consumption (12.4 kJ g-1). In particular, on the CNF surface, the surface hydroxyl groups are restored by removal of the carboxyl moieties via saponification, which offers a significant opportunity for reconstitution of stronger hydrogen bonding interfaces. Therefore, the resultant CNFs can be used as sustainable building blocks for construction of multidimensional advanced cellulosic materials, e.g., 1D filaments, 2D films, and 3D aerogels. The proposed surface engineering strategy provides a new platform for fully utilizing the characteristics of the cellulose elementary fibrils in the development of high-performance cellulosic materials.

15.
Small ; 20(2): e2303464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670207

RESUMO

Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.

16.
Environ Res ; 238(Pt 2): 117214, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783332

RESUMO

Biodesulfurization is a mature technology, but obtaining biosulfur (S0) that can be easily settled naturally is still a challenge. Increasing the sulfide load is one of the known methods to obtain better settling of S0. However, the inhibitory effect of high levels of sulfide on microbes has also not been well studied. We constructed a high loading sulfide (1.55-10.86 kg S/m3/d) biological removal system. 100% sulfide removal and 0.56-2.53 kg S/m3/d S0 (7.0 ± 0.09-16.4 ± 0.25 µm) recovery were achieved at loads of 1.55-7.75 kg S/m3/d. Under the same load, S0 in the reflux sedimentation tank, which produced larger S0 particles (24.2 ± 0.73-53.8 ± 0.70 µm), increased the natural settling capacity and 45% recovery. For high level sulfide inhibitory effect, we used metagenomics and metatranscriptomics analyses. The increased sulfide load significantly inhibited the expression of flavin cytochrome c sulfide dehydrogenase subunit B (fccB) (Decreased from 615 ± 75 to 30 ± 5 TPM). At this time sulfide quinone reductase (SQR) (324 ± 185-1197 ± 51 TPM) was mainly responsible for sulfide oxidation and S0 production. When the sulfide load reached 2800 mg S/L, the SQR (730 ± 100 TPM) was also suppressed. This resulted in the accumulation of sulfide, causing suppression of carbon sequestration genes (Decreased from 3437 ± 842 to 665 ± 175 TPM). Other inhibitory effects included inhibition of microbial respiration, production of reactive oxygen species, and DNA damage. More sulfide-oxidizing bacteria (SOB) and newly identified potential SOB (99.1%) showed some activity (77.6%) upon sulfide accumulation. The main microorganisms in the sulfide accumulation environment were Thiomicrospiracea and Burkholderiaceae, whose sulfide oxidation capacity and respiration were not significantly inhibited. This study provides a new approach to enhance the natural sedimentation of S0 and describes new microbial mechanisms for the inhibitory effects of sulfide.


Assuntos
Sulfeto de Hidrogênio , Sulfetos , Oxirredução , Bactérias/metabolismo , Reatores Biológicos
17.
Water Res ; 246: 120677, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827037

RESUMO

Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Óleos de Silicone , Compostos de Sulfidrila , Enxofre , Biofilmes , Eletrodos , Eletricidade
18.
Water Res ; 245: 120578, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688857

RESUMO

Efficient removal of chlorinated organic contaminants using the microbial fuel cell (MFC) provides a promising strategy to alleviate water pollution and energy crisis. However, bio-degradation is challenged by poor biofilm formation and sluggish intracellular electron transfer, causing unsatisfactory electricity generation. To address those problems, a metal-organic framework derivative, Ru-porous TiO2 (Ru-PT) bio-anode has been artfully designed herein for chlorobenzene removal. The Ru-PT bio-anode not only formed a compact anodic biofilm due to the large specific surface area of PT, but more importantly, it introduced special pseudocapacitance-enhanced intracellular electron transfer by slowly implanting Ru4+/Ru3+ redox pair into bacteria. Such a Ru4+/Ru3+ implantation was then found to directionally induce the enrichment of a dual-functional genus (degrader & exoelectrogen), Pseudomonas, thereby enhancing the conversion of bio-refractory chlorophenols towards biodegradable carboxylic acids. These features allowed our MFC to have a resilient chlorobenzene removal and accompanied satisfactory electricity generation, with power density, coulombic efficiency, and turnover frequency reaching 662 mW m-2, 8.7%, and 386,622 s-1, which outcompeted those of other MFCs reported. Further, benefiting from the reversible pseudocapacitance, the Ru-PT bio-anode intriguingly functioned as an internal capacitor for electricity storage. This work provided important insights into cost-effective bio-anode development and offered an avenue for engineering MFC.


Assuntos
Fontes de Energia Bioelétrica , Clorofenóis , Estruturas Metalorgânicas , Elétrons , Eletricidade , Eletrodos
19.
J Chromatogr A ; 1704: 464089, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37307636

RESUMO

Traditional offline detection of volatile organic compounds (VOCs) requires complex and time-consuming pre-treatments including gas sampling in containers, pre-concentrations, and thermal desorption, which hinders its application in rapid VOCs monitoring. Developing a cost-effective instrument is of great importance for online measurement of VOCs. Recently, photoionization detectors (PID) are received great attention due to their fast response time and high sensitivity. This study a portable gas chromatography coupled to PID (pGC-PID) was developed and optimized experimental parameters for the application in online monitoring of VOCs at an industrial site. The sampling time, oven temperature and carrier gas flow rate were optimized as 80 s, 50 °C and 60 ml·min-1, respectively. The sampling method is direct injection. Poly tetra fluoroethylene (PTFE) filter membranes were selected to remove particulate matter from interfering with PID. The reproducibility and peak separation were good with relative standard deviations (RSD) ≤ 7%. Good linearities of 27 VOCs standard curves were achieved with R2 ≥ 0.99, and the detection limits were ≤10 ppb with the lowest being 2 ppb for 1,1,2-Trichloroethane. Finally, the pGC-PID is successfully applied in online VOCs monitoring at an industrial site. A total of 17 VOCs species was detected and their diurnal variations were well obtained, indicating pGC-PID is well suited for online analysis in field campaign.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Reprodutibilidade dos Testes , Cromatografia Gasosa/métodos , Temperatura , Monitoramento Ambiental/métodos
20.
J Hazard Mater ; 457: 131794, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315409

RESUMO

The treatment of chlorinated volatile organic compounds faces challenges of secondary pollution and less-efficiency due to the substitution of chlorine. Microbial fuel cells (MFCs) provide a promising opportunity for its abatement. In this study, a novel Fe3O4 nanoparticles and silicone-based powder (SP) were integrated and immobilized on carbon felt (CF+Fe3O4@SP), which was further used as anode in the chlorobenzene (CB) powered MFC. Owing to the cooperation between SP and Fe3O4, the anode exhibited excellent performance for both biodechlorination and power generation. The results indicated that the CF+Fe3O4@SP anode loaded MFC achieved 98.5% removal of 200 mg/L CB within 28 h, and the maximum power density was 675.9 mW/m3, which was a 45.6% increase compared to that of the bare CF anode. Microbial community analysis indicated that the genera Comamonadaceae, Pandoraea, Obscuribacteraceae, and Truepera were dominated, especially, the Comamonadaceae and Obscuribacteraceae showed outstanding affinity for Fe3O4 and SP, respectively. Moreover, the proportion of live bacteria, secretion of extracellular polymer substances, and protein content in the extracellular polymer substances were significantly increased by modifying Fe3O4@SP onto the carbon-based anode. Thus, this study provides new insights into the development of MFCs for refractory and hydrophobic volatile organic compounds removal.


Assuntos
Fontes de Energia Bioelétrica , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Purificação da Água , Bactérias , Carbono/química , Eletricidade , Eletrodos , Polímeros , Pós , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA