Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408794

RESUMO

When activated by thrombin, the platelets release their granular store of factors. These thrombin-activated platelets (TAPLT) have been shown to be capable of ameliorating pro-inflammatory processes. In this study, we tested if TAPLT could also protect the endothelium against tumor-related pro-inflammatory changes that promote angiogenesis and metastasis. Using endothelial cell (EC) models in vitro, we demonstrated that TAPLT protected EC against tumor conditioned medium (TCM)-induced increases of reactive oxygen species (ROS) production, EC permeability and angiogenesis, and inhibited transendothelial migration that was critical for cancer cell extravasation and metastasis. In vivo observations of TAPLT-mediated inhibition of angiogenesis and pulmonary colonization in a BALB/c nude mouse model were consistent with the in vitro findings. Neutralization of vascular cell adhesion molecule-1 (VCAM-1) binding significantly inhibited the ability of TAPLT to interact with EC and abrogated the TAPLT-mediated protection of EC against tumor angiogenesis and metastasis. Taken together, these findings suggest that VCAM-1-mediated linkage to EC is required for TAPLT to confer protection of EC against tumor-induced permeation and angiogenesis, thereby resisting tumor extravasation and metastasis.


Assuntos
Endotélio Vascular , Molécula 1 de Adesão de Célula Vascular , Animais , Plaquetas/metabolismo , Adesão Celular/fisiologia , Movimento Celular , Células Cultivadas , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Trombina/metabolismo , Trombina/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201848

RESUMO

This study investigated the effects of chitosan oligosaccharide (COS) on glucose metabolism and hepatic steatosis in a high-fat (HF) diet/streptozotocin-induced diabetic rat model. Male Wistar rats were divided into: (1) normal control (NC group), (2) HF diet (HF group), (3) streptozotocin (STZ)-induced diabetes with HF diet (DF group), and DF group supplemented with (4) 0.5% COS (D0.5F group), (5) 1% COS (D1F group), and (6) 5% COS (D5F group) for 4 weeks. COS supplementation significantly decreased the plasma glucose, BUN, creatinine, uric acid, triglyceride (TG), and total cholesterol (TC) levels, and hepatic glucose-6-phosphatase activity, and significantly increased hepatic hexokinase activity and glycogen content in diabetic rats; but the increased hepatic TG and TC levels could not be significantly decreased by COS supplementation. Supplementation of COS increased superoxide dismutase activity and decreased lipid peroxidation products in the diabetic rat livers. COS supplementation significantly increased phosphorylated AMP-activated protein kinase (AMPK) protein expression, and attenuated protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK) and phosphorylated p38 and renal sodium-glucose cotransporter-2 (SGLT2) in diabetic rats. These results suggest that COS may possess a potential for alleviating abnormal glucose metabolism in diabetic rats through the inhibition of hepatic gluconeogenesis and lipid peroxidation and renal SGLT2 expression.


Assuntos
Glicemia/efeitos dos fármacos , Quitosana , Gluconeogênese/efeitos dos fármacos , Oligossacarídeos/farmacologia , Animais , Diabetes Mellitus Experimental , Gorduras na Dieta , Fígado/efeitos dos fármacos , Masculino , Modelos Animais , Ratos , Ratos Wistar , Estreptozocina
3.
Oncol Lett ; 21(4): 304, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732380

RESUMO

Skin cancer is caused by abnormal proliferation, gene regulation and mutation of epidermis cells. Compound C is commonly used as an inhibitor of AMP-activated protein kinase (AMPK), which serves as an energy sensor in cells. Recently, compound C has been reported to induce apoptotic and autophagic death in various skin cancer cell lines via an AMPK-independent pathway. However, the signaling pathways activated in compound C-treated cancer cells remain unclear. The present oligodeoxynucleotide-based microarray screening assay showed that the mRNA expression of the zinc-finger transcription factor early growth response-1 (EGR-1), which helps regulate cell cycle progression and cell survival, was significantly upregulated in compound C-treated skin cancer cells. Compound C was demonstrated to induce EGR-1 mRNA and protein expression in a time and dose-dependent manner. Confocal imaging showed that compound C-induced EGR-1 protein expression was localized in the nucleus. Compound C was demonstrated to activate extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of this compound C-induced ERK phosphorylation downregulated the mRNA and protein expression of EGR-1. In addition, removal of compound C-induced reactive oxygen species (ROS) not only decreased ERK phosphorylation, but also inhibited compound C-induced EGR-1 expression. A functional assay showed that knock down of EGR-1 expression in cancer cells decreased the survival rate while also increasing caspase-3 activity and apoptotic marker expression after compound C treatment. However, no difference in autophagy marker light chain 3-II protein expression was observed between compound C-treated control cells and EGR-1-knockdown cells. Thus, it was concluded that that EGR-1 may antagonize compound C-induced apoptosis but not compound C-induced autophagy through the ROS-mediated ERK activation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA