Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Pharmacol ; 15: 1380098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881875

RESUMO

Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.

2.
J Sci Food Agric ; 104(4): 2204-2214, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934077

RESUMO

BACKGROUND: With the requirements of environmental, cost and economic sustainability, new sources of alternative proteins in the livestock industry are receiving increasing attention. Mulberry (Morus alba L.) leaves are a unique feed resource because of their high protein content and large availability. Therefore, mining sustainable protein suitable for the animal husbandry industry in sericulture resources could achieve a win-win situation. RESULTS: The protein content in mulberry leaves is 232.10-386.16 g kg-1 , and the mean value of crude fat content is 43.76 ± 8.48 g kg-1 , which has the advantages of protein content and energy. In addition, the average content of phytic acid in mulberry leaves is only 1.88 ± 0.56 g kg-1 , which means that it is not inhibited in terms of nutrient absorption. Meanwhile, the digestibility of protein was Bean pulp > Sample 8 ≈ Alfalfa ≈ Sample 13 ≈ Cottonseed meal > Fish meal, and the ß-turn and particle size of mulberry leaf protein are more conducive to digestion in vitro. Furthermore, the protein of Sample 13 had the richest essential amino acids (252.00 g kg-1 ) and the highest essential amino acid index (EAAI), which was superior to conventional feed protein. In addition, the partial substitution of mulberry leaf protein (15%) significantly increased the EAAI value of conventional feed protein. However, to balance nutrition, it is necessary to combine mulberry leaf protein with other proteins to further broaden its application field. CONCLUSION: Mulberry leaves are a new source of feed protein, which helps to alleviate the two major problems of mulberry resource surplus and feed protein resource shortage. © 2023 Society of Chemical Industry.


Assuntos
Morus , Animais , Morus/química , Folhas de Planta/química
3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761984

RESUMO

The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes , Proteínas da Membrana Bacteriana Externa/genética
4.
Genes Dis ; 10(3): 771-785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396555

RESUMO

Vascular remodeling and angiogenesis are two key processes in the maintenance of vascular homeostasis and involved in a wide array of vascular pathologies. Following these processes, extracellular matrix (ECM) provides the mechanical foundation for vascular walls. Lysyl oxidase (LOX), the key matrix-modifying enzyme, has been demonstrated to significantly affect structural abnormality and dysfunction in the blood vessels. The role of LOX in vascular remodeling and angiogenesis has always been the subject in the current medical research. Therefore, we presently make a summarization of the biosynthesis of LOX and the mechanisms involved in vascular remodeling and angiogenesis, as well as the role of LOX in diseases associated with vascular abnormalities and the therapeutic potential via targeting LOX. In particular, we give a proposal that LOX likely reshapes matrisome-associated genes expressions in the regulation of vascular remodeling and angiogenesis, which serves as a mechanistic insight into the critical role of LOX in these two aspects. Additionally, LOX has also dual effects on the vascular dysfunction, namely, inhibition of LOX for improving hypertension, restenosis and malignant tumor while activation of LOX for curing arterial aneurysm and dissection. LOX-targeted therapy may provide a promising therapeutic strategy for the treatment of various vascular pathologies associated with vascular remodeling and angiogenesis.

5.
Oxid Med Cell Longev ; 2020: 6687185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299529

RESUMO

Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.


Assuntos
Antioxidantes/farmacologia , Epilepsia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Epilepsia/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Clin Chim Acta ; 494: 8-13, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30871973

RESUMO

BACKGROUND: Nardilysin, a kind of metalloendopeptidase, plays an important role in numerous inflammatory diseases. Malignant cerebral infarction (Glasgow coma scale score of <9) is associated with a high mortality risk. Here, we intended to investigate the relationship between serum nardilysin levels and prognosis of patients with malignant cerebral infarction. METHODS: Serum nardilysin concentrations were quantified at malignant cerebral infarction diagnosis moment in 105 patients and at study entrance in 105 healthy controls. Association of nardilysin concentrations with 30-day mortality and overall survival was estimated using multivariate analyses. RESULTS: The patients exhibited substantially increased serum nardilysin concentrations, as compared to the controls. Nardilysin concentrations were in pronounced correlation with Glasgow coma scale scores and serum C-reactive protein concentrations. Serum nardilysin was independently predictive of 30-day mortality and overall survival. Under receiver operating characteristic curve, its high discriminatory ability was found. CONCLUSIONS: Rising serum nardilysin concentrations following malignant cerebral infarction are strongly related to stroke severity, inflammatory extent and a higher risk of mortality, substantializing serum nardilysin as a potential prognostic biomarker for malignant cerebral infarction.


Assuntos
Infarto Cerebral/sangue , Infarto Cerebral/mortalidade , Metaloendopeptidases/sangue , Idoso , Infarto Cerebral/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Sobrevida
7.
Inorg Chem ; 58(5): 3058-3064, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30768251

RESUMO

The design and preparation of a porous high-valence metal-organic framework (MOF) featuring open coordination sites are of utmost importance for the development of adsorbent materials. Here in this work, the three-dimensional (3D) high-valence MOF [Er(dcbp)3/2(DMF)(H2O)2]·2H2O (HV-MOF-1; H2dcbp = 4,4'-dicarboxy-2,2'-bipyridine, DMF = N,N-dimethylformamide), which possesses permanent porosity and two open coordination sites, has been prepared and characterized. In the 3D framework, the dcbp molecules display two different bridging styles, resulting in ordered diamondlike pores with bared carboxyl oxygen and pyridine nitrogen atoms on dcbp exposed directly to the pores, generating hydrophilic characteristics and high water affinity. In addition, the open coordination sites act as arms to fix the adsorbed water molecules, providing high water adsorption capacity (5.95 mmol g-1) and selectivity. More importantly, the activated HV-MOF-1 species shows an energy-saving step for recycling (operation under 120 °C), demonstrating promise as a candidate for an adsorbent material with considerable water adsorption-desorption cycles.

8.
ACS Appl Mater Interfaces ; 11(7): 7272-7279, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30696243

RESUMO

Subtle integration of rotatable polar components into dielectric crystals can contribute significantly to adjustable switching temperatures ( Ts) and dielectric relaxation behaviors. Currently, one of the biggest challenges lies in the design of optimal polar components with moderate motion resistance in a crystalline system. In this work, we demonstrate that under refrigerator conditions, rotatable hydrogen-bonded one-dimensional (1D) cationic chains, {[C2H6N5]+} n (C2H6N5 = 3,5-diamino-1,2,4-triazolinium), and two-dimensional (2D) anionic layers, {[(H2O)2·SO4]2-} n, can be generated in an organic salt, 3 ([C2H6N5]2·[(H2O)2·SO4]). Compared with the nonhydrated precursor, 2 ([C2H7N5]·[SO4]), the rotation of these 1D and 2D ionic species triggers a reversible phase transition and dielectric switching in 3. In addition, the significantly sluggish rotation of the 1D cationic chains from parallel to unparallel stacking and the counter-clockwise rotation of the 2D anionic layers, compared with their reverse processes, induce a frequency-dependent dielectric response with a more highly adjustable heating Ts↑ than the cooling Ts↓. More importantly, 3 possesses excellent self-recovery ability attributed to the highly dynamic character of the hydrogen-bonded ionic species. The strategy here can provide a fairly good model for designing dielectric crystals with desired rotatable polar components.

9.
Clin Chim Acta ; 486: 335-340, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144440

RESUMO

BACKGROUND: Cleaved receptor for advanced glycation end-products (cRAGE) has been introduced as a new inflammatory marker. We clarified the associations between cRAGE levels, disease severity and functional outcome in aneurysmal subarachnoid hemorrhage (aSAH). METHODS: In this prospective, observational study, plasma levels of total soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) were quantified in 108 aSAH patients and 108 controls. The level of cRAGE was calculated by subtracting the level of esRAGE from that of sRAGE. World Federation of Neurological Surgeons (WFNS) score, modified Fisher score, and Hunt Hess (HH) score were recorded to assess aSAH severity. Relationship between plasma cRAGE levels and 6-month poor outcome (Glasgow Outcome Scale score of 1-3) was assess using multivariate analysis. RESULTS: Plasma cRAGE levels were significantly higher in patients than in controls. Its levels were significantly correlated with WNFS score, modified Fisher score and HH score of patients. Plasma cRAGE emerged as an independent predictor for 6-month poor outcome. Area under receiver operating characteristic curve (AUC) of this biomarker was similar to those of WNFS score, modified Fisher score and HH score. Moreover, it significantly improved AUCs of WNFS score, modified Fisher score and HH score. CONCLUSIONS: Plasma cRAGE levels are highly associated with the severity and poor prognosis in aSAH.


Assuntos
Produtos Finais de Glicação Avançada/sangue , Aneurisma Intracraniano/sangue , Hemorragia Subaracnóidea/sangue , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Aneurisma Intracraniano/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Índice de Gravidade de Doença , Hemorragia Subaracnóidea/metabolismo , Adulto Jovem
10.
J Mater Chem B ; 6(42): 6752-6766, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254692

RESUMO

The co-delivery of two or more anti-tumor agents using nanocarriers has shown great promise in cancer therapy, but more work is needed to selectively target drugs to specific subcellular organelles. To this end, our research has reported on "smart" polymeric nanoparticles that can encapsulate two different site-oriented pro-drug molecules, allowing them to reach their targeted subcellular organelles based on NIR-mediated controlled release, allowing for targeted modifications in the nucleus or the mitochondria. Specially, an all-trans retinoic acid (RA) conjugated cisplatin derivative (RA-Pt) can be delivered with high affinity to the nucleus of target cells, facilitating the binding of cisplatin to double-stranded DNA. Similarly, a synthesized derivative generated by conjugation of triphenylphosphine (TPP) and celastrol (TPP-Cet) may facilitate mitochondrial targeted drug delivery in tumor cells, inducing ROS accumulation and thereby leading to apoptosis. Relative to nanoparticles loaded with a single therapeutic agent, dual antitumor agent-loaded nanocarriers showed promising synergy, exhibiting significant tumor inhibition in vivo (81.5%), and less systemic toxicity than the free therapeutic agents alone or the drug-loaded nanoparticles without targeted ligands. These results indicated that site-oriented payloads can effectively enhance antitumor therapeutic efficiency and these studies offer a novel "multistage targeted-delivery" strategy in synergistic therapy for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA