RESUMO
The heterogeneity of stem cells is a significant factor inhibiting their clinical application, as different cell subpopulations may exhibit substantial differences in biological functions. We performed single-cell sequencing on HUMSCs from three donors of different gestational ages (22 + 5 weeks, 28 weeks, 39 weeks). We also compared the data with single-cell sequencing data from BMSCs from two public databases. The content of CD146+Nestin+ MSCs in preterm HUMSCs (22 + 5W: 30.2%, 28W: 25.8%) was higher than that in full-term HUMSCs (39W: 0.5%) and BMSCs (BMSC1: 0, BMSC2: 0.9%). Cell cycle analysis indicated a higher proportion of cells in the proliferative G2M phase in CD146+Nestin+ MSCs (40.8%) compared to CD146+Nestin- MSCs (20%) and CD146-Nestin- MSCs (12.5%). Degree of differentiation assessment suggested that CD146+Nestin+ MSCs exhibited lower differentiation than other cell subpopulations. Differential gene analysis revealed that CD146+Nestin+ MSCs overexpressed immune regulation-related factors. GO and KEGG enrichment analysis of modules identified by WGCNA suggested enrichment in pathways related to cellular immune regulation, antimicrobial activity, and proliferation. Immune-related gene analysis indicated that CD146+Nestin+ MSCs exhibited expression of multiple immune-related genes associated with "Antimicrobials," "Cytokines," and "Cytokine Receptors." Gene regulatory network analysis revealed high expression of immune-related regulators RELB, GAPB1, and EHF in CD146+Nestin+ MSCs.Our study provides a single-cell atlas of preterm HUMSCs, demonstrating the expression of CD146+Nestin+ MSCs across different tissues and confirming their advantages in cellular proliferation, antimicrobial activity, immune regulation, and low differentiation at the RNA level. This contributes valuable insights for the clinical application of HUMSCs.
RESUMO
Carbohydrate-protein interactions play fundamental roles in numerous aspects of biological activities, and the search for new carbohydrate (CHO)-binding proteins (CBPs) has long been a research focus. In this study, through the analysis of CBP structures, we identified significant enrichment of aromatic residues in CHO-binding regions. We further summarized the structural features of these aromatic rings within the CHO-stacking region, namely "exposing" and "proximity" features, and developed a screening algorithm that can identify CHO-stacking Trp (tryptophan) residues based on these two features. Our Trp screening algorithm can achieve high accuracy in both CBP (specificity score 0.93) and CBS (Carbohydrate binding site, precision score 0.77) prediction using experimentally determined protein structures. We also applied our screening algorithm on AlphaGO pan-species predicted models and observed significant enrichment of carbohydrate-related functions in predicted CBP candidates across different species. Moreover, through carbohydrate arrays, we experimentally verified the CHO-binding ability of four candidate proteins, which further confirms the robustness of the algorithm. This study provides another perspective on proteome-wide CBP and CBS prediction. Our results not only help to reveal the structural mechanism of CHO-binding, but also provide a pan-species CBP dataset for future CHO-protein interaction exploration.
RESUMO
irGSEA is an R package designed to assess the outcomes of various gene set scoring methods when applied to single-cell RNA sequencing data. This package incorporates six distinct scoring methods that rely on the expression ranks of genes, emphasizing relative expression levels over absolute values. The implemented methods include AUCell, UCell, singscore, ssGSEA, JASMINE and Viper. Previous studies have demonstrated the robustness of these methods to variations in dataset size and composition, generating enrichment scores based solely on the relative gene expression of individual cells. By employing the robust rank aggregation algorithm, irGSEA amalgamates results from all six methods to ascertain the statistical significance of target gene sets across diverse scoring methods. The package prioritizes user-friendliness, allowing direct input of expression matrices or seamless interaction with Seurat objects. Furthermore, it facilitates a comprehensive visualization of results. The irGSEA package and its accompanying documentation are accessible on GitHub (https://github.com/chuiqin/irGSEA).
Assuntos
Algoritmos , Análise de Célula Única , Software , Análise de Célula Única/métodos , Humanos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodosRESUMO
The design of heterogeneous catalysts generally involves optimizing the reactivity descriptor of adsorption energy, which is inevitably governed by the structure of surface-active sites. A prerequisite for understanding the structure-properties relationship is the precise identification of real surface-active site structures, rather than relying on conceived structures derived from bulk alloy properties. However, it remains a formidable challenge due to the dynamic nature of nanoalloys during catalytic reactions and the lack of accurate and efficient interatomic potentials for simulations. Herein, a generalizable deep-learning potential for the Ag-Pd-F system is developed based on a dataset encompassing the bulk, surface, nanocluster, amorphous, and point defected configurations with diverse compositions to achieve a comprehensive description of interatomic interactions, facilitating precise prediction of adsorption energy, surface energy, formation energy, and diffusion energy barrier and is utilized to investigate the structural evolutions of AgPd nanoalloys during fluorination. The structural evolutions involve the inward diffusion of F, the outward diffusion of Ag in Ag@Pd nanoalloys, the formation of surface AgFx species in mixed and Janus AgPd nanoalloys, and the shape deformation from cuboctahedron to sphere in Ag and Pd@Ag nanoalloys. Moreover, the effects of atomic diffusion and dislocation formation and migration on the reconstructing pathway of nanoalloys are highlighted. It is demonstrated that the stress relaxation upon F adsorption serves as the intrinsic driving factor governing the surface reconstruction of AgPd nanoalloys.
RESUMO
Optogenetic manipulation with single-cell resolution can be achieved by two-photon excitation. However, this frequently requires relatively high laser powers. Here, we developed a novel strategy that can improve the efficiency of current two-photon stimulation technologies by positioning fluorescent proteins or small fluorescent molecules with high two-photon cross-sections in the vicinity of opsins. This generates a highly localized source of endogenous single-photon illumination that can be tailored to match the optimal opsin absorbance. Through neuronal and vascular stimulation in the live mouse brain, we demonstrate the utility of this technique to achieve efficient opsin stimulation, without loss of cellular resolution. We also provide a theoretical framework for understanding the potential advantages and constrains of this methodology, with directions for future improvements. Altogether, this fluorescence transfer illumination method opens new possibilities for experiments difficult to implement in the live brain such as all-optical neural interrogation and control of regional cerebral blood flow.
RESUMO
AgPd nanoalloys often undergo structural evolution during catalytic reactions; the mechanism underlying such restructuring remains largely unknown due to the use of oversimplified interatomic potentials in simulations. Herein, a deep-learning potential is developed for AgPd nanoalloys based on a multiscale dataset spanning from nanoclusters to bulk configurations, exhibits precise predictions of mechanical properties and formation energies with near-density functional theory accuracy, calculates the surface energies closer to experimental values compared to those obtained by Gupta potentials, and is applied to investigate the shape reconstruction of single-crystalline AgPd nanoalloys from cuboctahedron (Oh) to icosahedron (Ih) geometries. The Oh to Ih shape restructuring is thermodynamically favorable and occurs at 11 and 92 ps for Pd55@Ag254 and Ag147@Pd162 nanoalloys, respectively. During the shape reconstruction of Pd@Ag nanoalloys, concurrent surface restructuring of the (100) facet and internal multi-twinned phase change are observed with collaborative displacive characters. The presence of vacancies can influence the final product and reconstructing rate of Pd@Ag core-shell nanoalloys. The Ag outward diffusion on Ag@Pd nanoalloys is more pronounced in Ih geometry compared to Oh geometry and can be further accelerated by the Oh to Ih deformation. The deformation of single-crystalline Pd@Ag nanoalloys is characterized by a displacive transformation involving the collaborative displacement of a large number of atoms, distinguishing it from the diffusion-coupled transformation of Ag@Pd nanoalloys.
RESUMO
Formate is a promising hydrogen carrier for safe storage and transport and a fuel for direct formate fuel cells. However, the sluggish kinetics of catalysts for formate dehydrogenation (FDH) and oxidation reactions (FORs) significantly limit the potential applications of formate. Strain effects can effectively modulate catalytic properties by altering the electronic structure. Nevertheless, the lack of theoretical principles to quantify atomic strain and its effects on FDH and FOR catalytic activity has made experimental efforts laborious. In this work, we establish a database of atomic strain distributions for AgPd nanoalloys, reveals that the presence of compressive strain at the edges and corners and compressive strain exerted on the surface of Ag@Pd nanoalloys, particularly the one with an icosahedral shape, boost the FDH and FOR catalytic activity by shifting down the d-band center, thus weakening the adsorption of key intermediate Had. This study provides a theoretical perspective on the development and use of formate as a hydrogen carrier and fuel.
RESUMO
BACKGROUND: Despite the progress in perinatal-neonatal medicine, complications of extremely preterm infants continue to constitute the major adverse outcomes in neonatal intensive care unit. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells (HUMSCs) may offer new hope for the treatment of intractable neonatal disorders. This study will explore the functional differences of HUMSCs between extremely preterm and term infants. METHODS: UMSCs from 5 extremely preterm infants(weeks of gestation: 22+5 w,24+4 w,25+3 w,26 w,28 w) and 2 term infants(39 w,39+2 w) were isolated, and mesenchymal markers, pluripotent genes, proliferation rate were analyzed. HUVECs were injured by treated with LPS and repaired by co-cultured with HUMSCs of different gestational ages. RESULTS: All HUMSCs showed fibroblast-like adherence to plastic and positively expressed surface marker of CD105,CD73 and CD90, but did not expressed CD45,CD34,CD14,CD79a and HLA-DR; HUMSCs in extremely preterm exhibited significant increase in proliferation as evidenced by CCK8, pluripotency markers OCT-4 tested by RT-PCR also showed increase. Above all, in LPS induced co-cultured inflame systerm, HUMSCs in extremely preterm were more capable to promote wound healing and tube formation in HUVEC cultures, they promoted TGFß1 expression and inhibited IL6 expression. CONCLUSIONS: Our results suggest that HUMSCs from extremely preterm infants may be more suitable as candidates in cell therapy for the preterm infants.
Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Recém-Nascido , Gravidez , Feminino , Humanos , Lactente Extremamente Prematuro , Lipopolissacarídeos , Cordão UmbilicalRESUMO
The study provides a proof of concept for the first time that unique palladium-gold (PdAu) and palladium-silver (PdAg) nanodendrites are bifunctional catalytic active sites for formate oxidation reactions (FORs) and formate dehydrogenation reactions (FDRs). The unique nanodendritic structure was developed via a simple galvanic displacement reaction for the direct growth of PdAu and PdAg nanodendrites on a nickel foam (PdAu/NiNF and PdAg/NiNF). These PdAu/NiNF and PdAg/NiNF electrodes exhibited 2.32 and 1.59 times higher specific activity than that of the commercial Pd/C electrode and promising stability toward FORs. Moreover, the PdAu/NiNF and PdAg/NiNF nanodendrites were also highly active and selective catalysts for hydrogen generation from a formate solution with turnover frequency (TOF) values of 311 h-1 and 287 h-1 respectively. Impressively, a passive air-breathing formate fuel cell with PdAu/NiNF used as an anode can yield an open-circuit voltage of 1.12 V and a peak power density of 21.7 mW cm-2, which outperforms most others reported in the literature. PdAu and PdAg nanodendritic catalysts supported on a nickel foam demonstrate an open structure and uniform catalyst distribution and offer a promising nanoalloy for air-breathing formate fuel cells and on-site chemical hydrogen production systems.
RESUMO
The methanol oxidation reaction (MOR) is crucial in many energy-conversion devices. Although intensive efforts have been devoted to improving the MOR catalytic activity of Pt-based catalysts by treatment or alloying, enhancing the MOR catalyst performance utilizing solar energy has been less investigated. PtAg nanoalloys, combining the intrinsic catalytic activity of Pt toward the MOR with the visible spectrum plasmonic response of Ag, are expected to be a good MOR catalyst for solar energy, however, it remains challenging to incorporate these immiscible elements into a nanoalloy in a controlled way using conventional synthetic techniques. Herein, we proposed a general strategy for alloying silver and platinum elements into single-phase solid-solution nanoparticles with arbitrarily desired composition by bonding pure Pt targets with pure Ag strips in an improved pulsed laser deposition. The as-prepared PtAg nanoalloys show two crystalline phases and an average particle size of about 4 nm. To prove utility, we use the PtAg nanoalloys as support-free MOR catalysts anchored on the surface of a glassy carbon electrode solidly and uniformly. The PtAg nanoalloys exhibit a mass catalytic activity of 3.6 A mg-1, which is 4.5 times higher than that of the commercial Pt/C catalyst. Besides, the PtAg nanoalloys exhibit a promising regenerability after reactivation by cyclic voltammetry. Furthermore, the MOR catalytic activity of PtAg nanoalloys increased by 16% under irradiation by simulated sunlight, which is attributed to the surface plasmon resonance as ascertained from the UV-vis absorption spectra and photocurrent response experiments. These studies are believed to provide a new strategy for the enhancement of MOR catalytic activity with visible light as the driving force.
RESUMO
HIGHLIGHTS: This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure-activity relationship. Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
RESUMO
PURPOSE: The association between maternal vitamin D concentrations and birth weight is controversial. We conducted a large-scale retrospective cohort study in southern China to explore this relationship. METHODS: From July 2017 to April 2019, we enrolled 10,586 pregnant women and measured serum vitamin D [via 25-hydroxyvitamin D, 25(OH)D] in the second trimester using electrochemiluminescence immunoassays. The association between macrosomia and 25(OH)D was analyzed using logistic regression and ROC curve. RESULTS: Average vitamin D concentration was 61.1 ± 20.2 nmol/L. Additionally, 31.1% participants had 25(OH)D concentrations <50.0 nmol/L, while 68.9% exhibited concentrations ≥50.0 nmol/L. Of the subjects, 3.2% of women delivered macrosomic infants (neonatal birth weight ≥4000 g) and 96.8% did not. The macrosomia group had lower vitamin D concentrations than the non-macrosomia group (59.5 ± 22.3 vs. 61.2 ± 20.1, p < .05). Approximately a third of each group had vitamin D < 50.0 nmol/L (non-macrosomia, 31.3%; macrosomia, 35.9%; p = .055). After adjusting for confounding variables, women with 25(OH)D ≥ 50.0 nmol/L had 24.3% lower macrosomia risk than women with 25(OH)D < 50.0 nmol/L (adjusted OR = 0.757, 95% CI = 0.599-0.956, p = .0193). The predictive accuracy of vitamin D concentrations for evaluating macrosomia risk was 0.667 area under the ROC curve. CONCLUSION: Maternal vitamin D levels are negatively correlated with macrosomia. Elevating vitamin D above 50.0 nmol/L may reduce macrosomia incidence.
Assuntos
Complicações na Gravidez , Deficiência de Vitamina D , Recém-Nascido , Feminino , Gravidez , Humanos , Segundo Trimestre da Gravidez , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Gestantes , Peso ao Nascer , Estudos Retrospectivos , Complicações na Gravidez/epidemiologia , Fatores de Risco , Vitamina D , Macrossomia Fetal/epidemiologia , Vitaminas , Calcifediol , China/epidemiologia , Aumento de PesoRESUMO
Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.
RESUMO
Multispecific antibodies, often composed of three to five polypeptide chains, have become increasingly relevant in the development of biotherapeutics. These molecules have mechanisms of action that include redirecting T cells to tumors and blocking multiple pathogenic mediators simultaneously. One of the major challenges for asymmetric multispecific antibodies is generating a high proportion of the correctly paired antibody during production. To understand the causes and effects of chain mispairing impurities in a difficult to express multispecific hetero-IgG, we investigated consequences of individual and pairwise chain expression in mammalian transient expression hosts. We found that one of the two light chains (LC) was not secretion competent when transfected individually or cotransfected with the noncognate heavy chain (HC). Overexpression of this secretion impaired LC reduced cell growth while inducing endoplasmic reticulum stress and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. The majority of this LC was observed as monomer with incomplete intrachain disulfide bonds when expressed individually. Russell bodies (RB) were induced when this LC was co-expressed with the cognate HC. Moreover, one HC paired promiscuously with noncognate LC. These results identify the causes for the low product quality observed from stable cell lines expressing this heteroIgG and suggest mitigation strategies to improve overall process productivity of the correctly paired multispecific antibody. The approach described here provides a general strategy for identifying the molecular and cellular liabilities associated with difficult to express multispecific antibodies.
Assuntos
Anticorpos Biespecíficos , Expressão Gênica , Engenharia de Proteínas , Animais , Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/genética , Células CHO , Cricetulus , Cabras , Células HEK293 , Humanos , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genéticaRESUMO
Cell death is prevalent throughout life; however, the coordinated interactions and roles of phagocytes during corpse removal in the live brain are poorly understood. We developed photochemical and viral methodologies to induce death in single cells and combined this with intravital optical imaging. This approach allowed us to track multicellular phagocytic interactions with precise spatiotemporal resolution. Astrocytes and microglia engaged with dying neurons in an orchestrated and synchronized fashion. Each glial cell played specialized roles: Astrocyte processes rapidly polarized and engulfed numerous small dendritic apoptotic bodies, while microglia migrated and engulfed the soma and apical dendrites. The relative involvement and phagocytic specialization of each glial cell was plastic and controlled by the receptor tyrosine kinase Mertk. In aging, there was a marked delay in apoptotic cell removal. Thus, a precisely orchestrated response and cross-talk between glial cells during corpse removal may be critical for maintaining brain homeostasis.
Assuntos
Astrócitos , Microglia , Astrócitos/metabolismo , Cadáver , Humanos , Neurônios , FagócitosRESUMO
Promoting the formate oxidation reaction (FOR) is central to develop promising direct formate fuel cells, but current electrocatalysts are suffering from low activity and ultrapoor stability. Herein, the ternary PdAgRh nanoalloys with ultrathin two-dimensional architecture are for the first time synthesized and employed as a novel class of electrocatalysts for the FOR. Benefitting from unique nanostructure as well as oxophilic Rh surface oxides, the Pd55Ag30Rh15/C electrocatalyst demonstrates an exceptional FOR activity of 1.85 A mgPd-1, showing a 4.74-fold improvement compared to the commercial Pd/C, and retains the current density of 150 mA mgPd-1 after a long-term test, representing the greatest durability among all available FOR electrocatalysts. More strikingly, extending the upper limit potential (ULP) of cyclic voltammetry is revealed to facilitate the surface reconstruction of the Pd55Ag30Rh15/C electrocatalyst to in situ form Ag surface oxides (Ag-O), resulting in a highly active and stable Pd/Ag-O interface at the atomic scale, which considerably boost the FOR performance. In particular, the reconstructed Pd55Ag30Rh15/C electrocatalyst exhibits a mass activity of 3.26 A mgPd-1 with 74.2% of initial activity retained after 1000 cycles. This work showcases an effective strategy to tune surface reconstruction on multimetallic nanoalloys for robust FOR electrocatalysts and beyond.