Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Bioorg Chem ; 147: 107419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703440

RESUMO

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Piridonas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Movimento Celular/efeitos dos fármacos
2.
Vet Parasitol ; : 110175, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614824

RESUMO

As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARß and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.

3.
Parasit Vectors ; 17(1): 163, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553755

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS: In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS: This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP ß gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP ß-overexpressed KCs. CONCLUSIONS: These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP ß/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.


Assuntos
Equinococose , MicroRNAs , NF-kappa B , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Células de Kupffer/metabolismo , Transdução de Sinais
4.
Am Surg ; 90(6): 1481-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549438

RESUMO

OBJECTIVE: The primary objective was to construct a high-performing prognostic risk model to accurately forecast the prognosis of patients diagnosed with intrahepatic cholangiocarcinoma (iCCA). METHODS: We retrospectively collected clinical data from the MSK database on 125 patients diagnosed with iCCA. Random sampling was utilized to divide patients into a training set and a validation set, maintaining a ratio of 7:3. Univariate and multivariate Cox proportional hazards regression models were utilized to identify independent prognostic factors influencing OS. Based on these independent factors, a model nomogram was established. The performance of the prognostic prediction models was assessed through calibration curves and C-index calculations. The Kaplan-Meier method was used to plot survival curves. Time-dependent ROC curve was used to evaluate the accuracy of the model. RESULTS: A nomogram was developed, incorporating hepatitis C, CA19, tumor extent, tumor size, LVI, positive lymph nodes, and TMB as predictive factors. The C-index for the training set was .78 and the validation set was .68. Using the riskscore derived from the nomogram, patients were stratified into high- and low-risk groups. The high-risk group exhibited considerably lower OS and RFS compared to the low-risk group in the training set (P < .05). However, no significant difference was detected in RFS among different risk groups in the validation set (P > .05). The AUC for 1-year, 3-year, and 5-year survival was .89, .69, and .69, respectively. CONCLUSION: We successfully developed and validated a prognostic nomogram for iCCA, demonstrating its excellent accuracy in predicting patient outcomes and providing clinicians with a potential prognostic tool.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Nomogramas , Humanos , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Masculino , Feminino , Estudos Retrospectivos , Prognóstico , Pessoa de Meia-Idade , Idoso , Modelos de Riscos Proporcionais , Estimativa de Kaplan-Meier , Curva ROC , Medição de Risco , Adulto , Fatores de Risco
5.
Phytomedicine ; 128: 155344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493721

RESUMO

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , Microglia , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Resveratrol , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Resveratrol/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , AVC Isquêmico/tratamento farmacológico , Modelos Animais de Doenças , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular
6.
J Asian Nat Prod Res ; : 1-9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509703

RESUMO

Thrombosis plays an important role in the occurrence and development of cardiovascular and cerebrovascular diseases that contribute to high mortality and morbidity in patients. L-(-)-Quebrachitol (QCT), a natural product, was first isolated from quebracho bark. It can inhibit PAF receptor and decrease gastric damage induced by indomethacin, as a drug against platelet aggregation. Here, five QCT derivatives were synthesized and investigated for their inhibitory effects on platelet aggregation. Among them, compound 3a showed anticoagulant effects comparable to aspirin, while compound 4b showed dose-independent inhibitory activities in rats that were stronger than aspirin.

7.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403951

RESUMO

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Lipossomos/química , Ácido N-Acetilneuramínico/química , Neoplasias da Mama/tratamento farmacológico , Vacinas contra COVID-19 , Paclitaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Lipídeos , Cátions , Linhagem Celular Tumoral
8.
Sci Rep ; 14(1): 5043, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424180

RESUMO

Central sarcopenia is associated with the prognosis of various orthopedic surgeries in the elderly. This study aims to investigate its impact on the outcomes of single-segment lumbar fusion surgery in elderly patients. Retrospective analysis was conducted on 314 patients aged 60 to 80 who underwent single-segment posterior lumbar fusion surgery due to degenerative lumbar diseases. Patients were categorized into high psoas and L4 vertebral index (PLVI) and low PLVI groups according to the MRI-measured PLVI for central sarcopenia. Basic patient data, surgery-related parameters, functional assessments at preoperative and postoperative 3, 6, and 12 months, and X-ray-based fusion status were compared. The basic data of the two groups showed no significant differences. Parameters including the operative segment, preoperative hemoglobin levels, surgical duration, and intraoperative blood loss exhibited no significant variances. However, notable differences were observed in postoperative initial hemoglobin levels, transfusion requirements, and length of hospital stay between the two groups. During the postoperative follow-ups at 3, 6, and 12 months, the VAS scores for lower back pain and ODI scores in the lower PLVI group were significantly higher compared to the high PLVI group. Additionally, the EuroQoL 5D scores were notably lower in the low PLVI group. There were no significant differences between the groups in terms of leg pain VAS scores at each time point and the fusion status at 12 months postoperatively. MRI-based central sarcopenia has a negative impact on the therapeutic effectiveness following single-segment lumbar fusion surgery in elderly patients.


Assuntos
Sarcopenia , Fusão Vertebral , Idoso , Humanos , Estudos Retrospectivos , Sarcopenia/etiologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Hemoglobinas , Fusão Vertebral/efeitos adversos , Resultado do Tratamento
9.
Cell Rep ; 43(2): 113714, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306271

RESUMO

Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/genética , Histonas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína Smad4/genética , Proteína Potenciadora do Homólogo 2 de Zeste
10.
Front Microbiol ; 15: 1314526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419641

RESUMO

Wheat dwarf virus (WDV) has caused considerable economic loss in the global production of grain crops. Knowledge of the evolutionary biology and population history of the pathogen remain poorly understood. We performed molecular evolution and worldwide phylodynamic analyses of the virus based on the genes in the protein-coding region of the entire viral genome. Our results showed that host-driven and geography-driven adaptation are major factors that affects the evolution of WDV. Bayesian phylogenetic analysis estimates that the average WDV substitution rate was 4.240 × 10-4 substitutions/site/year (95% credibility interval, 2.828 × 10-4-5.723 × 10-4), and the evolutionary rates of genes encoding proteins with virion-sense transcripts and genes encoding proteins with complementary-sense transcripts were different. The positively selected sites were detected in only two genes encoding proteins with complementary-sense, and WDV-barley are subject to stronger purifying selection than WDV-wheat. The time since the most recent common WDV ancestor was 1746 (95% credibility interval, 1517-1893) CE. Further analyses identified that the WDV-barley population and WDV-wheat population experienced dramatic expansion-decline episodes, and the expansion time of the WDV-barley population was earlier than that of the WDV-wheat population. Our phylogeographic analysis showed that the WDV population originating in Iran was subsequently introduced to Europe, and then spread from Eastern Europe to China.

11.
Bioact Mater ; 35: 135-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38312519

RESUMO

Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-ß1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.

12.
ACS Appl Mater Interfaces ; 16(10): 12897-12906, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412379

RESUMO

The "von Neumann bottleneck" is a formidable challenge in conventional computing, driving exploration into artificial synapses. Organic semiconductor materials show promise but are hindered by issues such as poor adhesion and a high elastic modulus. Here, we combine polyisoindigo-bithiophene (PIID-2T) with grafted poly(dimethylsiloxane) (PDMS) to synthesize the triblock-conjugated polymer (PIID-2T-PDMS). The polymer exhibited substantial enhancements in adhesion (4.8-68.8 nN) and reductions in elastic modulus (1.6-0.58 GPa) while maintaining the electrical characteristics of PIID-2T. The three-terminal organic synaptic transistor (three-terminal p-type organic artificial synapse (TPOAS)), constructed using PIID-2T-PDMS, exhibits an unprecedented analog switching range of 276×, surpassing previous records, and a remarkable memory on-off ratio of 106. Moreover, the device displays outstanding operational stability, retaining 99.6% of its original current after 1600 write-read events in the air. Notably, TPOAS replicates key biological synaptic behaviors, including paired-pulse facilitation (PPF), short-term plasticity (STP), and long-term plasticity (LTP). Simulations using handwritten digital data sets reveal an impressive recognition accuracy of 91.7%. This study presents a polyisoindigo-bithiophene-based block copolymer that offers enhanced adhesion, reduced elastic modulus, and high-performance artificial synapses, paving the way for the next generation of neuromorphic computing systems.

13.
Environ Pollut ; 345: 123499, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350535

RESUMO

Rare earth elements (REEs) are widely utilized in industries. However, The specific exposure features of REEs and potential biomarkers of exposure in occupational populations remain unclear. In this study, we evaluated the external and internal REEs exposure levels among the participants working in the ionic rare earth smelting plant. For the external exposure, the concentrations of 14 REEs and total rare earth elements (ΣREEs) in airborne particles were significantly elevated in the REEs-exposed versus non-exposed group (P < 0.05). Meanwhile, the levels of Yttrium (Y), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Thulium (Tm), Ytterbium (Yb), and ΣREEs in urine were higher in the REEs-exposed group compared to the non-exposed group (P < 0.05). Notably, a significant positive correlation was observed between Y in both the airborne particles and urine samples as well as Gd, and the Spearman correlation coefficient was 0.53 and 0.39 respectively, both P < 0.05. Conversely, no statistically significant differences were found in the levels of 15 REEs or ΣREEs in the blood samples between the REEs-exposed group and non-exposed group. Moreover, the concentrations of ΣREEs and 9 REEs in nail samples of the exposed group were significantly higher than those of the non-exposed group (P < 0.05), and the composition ratios of REEs in the nail samples closely resembled those found in individual airborne particles. Therefore, nail and urine samples were proposed to reflect long-term and short-term exposure to ionic rare earth respectively. Exposure biomarkers confirmed by external and internal exposure characteristics accurately provide the situation of human exposure to REEs environment, and have profound significance for monitoring and evaluating the level of REEs pollution in human body. It also provides a vital basis to find out the effect biomarkers, susceptible biomarkers and the health effects of rare earth environment for the future research.


Assuntos
Metais Terras Raras , Humanos , Ítrio , Disprósio , Biomarcadores
14.
AoB Plants ; 16(1): plad086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38249522

RESUMO

The ethylene response factor family genes are involved in the regulation of secondary metabolism in Salvia miltiorrhiza, but the mechanism underlying this regulation remains elusive. In the present study, based on the cDNA library of S. miltiorrhiza, an AP2/ERF gene was cloned and named SmERF1b-like. This gene exhibited a significant response to exogenous ethylene supply, such that ethylene remarkably upregulated SmERF1b-like expression levels in the leaves of S. miltiorrhiza. Subcellular localization showed that SmERF1b-like is located in the nucleus. Furthermore, SmERF1b-like showed a binding affinity with a GCC-box motif in the promoter region of genes associated with tanshinone biosynthesis in S. miltiorrhiza. Overexpression of SmERF1b-like in hairy roots of S. miltiorrhiza substantially upregulated SmCPS1 and SmKSL1 expression levels, resulting in increased biosynthesis of tanshinone I and cryptotanshinone contents. This finding provides valuable theoretical support for the utilization of a plant genetic engineering strategy to enhance S. miltiorrhiza resources.

15.
ACS Appl Mater Interfaces ; 16(5): 6250-6260, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284410

RESUMO

Thin, flexible, and electrically conductive films are in demand for electromagnetic interference (EMI) shielding. Two-dimensional NbSe2 monolayers have an electrical conductivity comparable to those of metals (106-107 S m-1) but are challenging for high-quality and scalable production. Here, we show that electrochemical exfoliation of flake NbSe2 powder produces monolayers on a large scale (tens of grams), at a high yield (>75%, monolayer), and with a large average lateral size (>20 µm). The as-exfoliated NbSe2 monolayer flakes are easily dispersed in diverse organic solvents and solution-processed into various macroscopic structures (e.g., free-standing films, coatings, patterns, etc.). Thermal annealing of the free-standing NbSe2 films reduces the interlayer distance of restacked NbSe2 from 1.18 to 0.65 nm and consequently enhances the electrical conductivity to 1.16 × 106 S m-1, which is superior to those of MXenes and reduced graphene oxide. The optimized NbSe2 film shows an EMI shielding effectiveness (SE) of 65 dB at a thickness of 5 µm (>110 dB for a 48-µm-thick film), among the highest in materials of similar thicknesses. Moreover, a laminate of two layers of the NbSe2 film (2 µm thick) with an insulating interlayer shows a high SE of 85 dB, surpassing that of the 20-µm-thick NbSe2 film (83 dB). A two-layer theoretical model is proposed, and it agrees with the experimental EMI SE of the laminated NbSe2 films. The ability to produce NbSe2 monolayers on a tens of grams scale will enable their diverse applications beyond EMI shielding.

16.
J Med Chem ; 67(3): 2095-2117, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38236416

RESUMO

Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.


Assuntos
Lipopolissacarídeos , Neuralgia , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Gabapentina , Desacetilase 6 de Histona/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia
17.
Adv Sci (Weinh) ; 11(7): e2303904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072662

RESUMO

Interactions between oncogenic proteins contribute to the phenotype and drug resistance. Here, EZH2 (enhancer of zest homolog 2) is identified as a crucial factor that mediates HIF-1 (hypoxia-inducible factor) inhibitor resistance. Mechanistically, targeting HIF-1 enhanced the activity of EZH2 through transcription activation of SUZ12 (suppressor of zest 12 protein homolog). Conversely, inhibiting EZH2 increased HIF-1α transcription, but not the transcription of other HIF family members. Additionally, the negative feedback regulation between EZH2 and HIF-1α is confirmed in lung cancer patient tissues and a database of cell lines. Moreover, molecular prediction showed that a newly screened dual-target compound, DYB-03, forms multiple hydrogen bonds with HIF-1α and EZH2 to effectively inhibit the activity of both targets. Subsequent studies revealed that DYB-03 could better inhibit migration, invasion, and angiogenesis of lung cancer cells and HUVECs in vitro and in vivo compared to single agent. DYB-03 showed promising antitumor activity in a xenograft tumor model by promoting apoptosis and inhibiting angiogenesis, which could be almost abolished by the deletion of HIF-1α and EZH2. Notably, DYB-03 could reverse 2-ME2 and GSK126-resistance in lung cancer. These findings clarified the molecular mechanism of cross-regulation of HIF-1α and EZH2, and the potential of DYB-03 for clinical combination target therapy.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
18.
Adv Sci (Weinh) ; 11(5): e2302816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058273

RESUMO

Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.

19.
Small ; 20(5): e2306646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759391

RESUMO

Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.

20.
Eur Radiol ; 34(4): 2297-2309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37707550

RESUMO

OBJECTIVES: To evaluate the ability of intraoperative CEUS to predict neurological recovery in patients with degenerative cervical myelopathy (DCM). METHODS: Twenty-six patients with DCM who underwent laminoplasty and intraoperative ultrasound (IOUS) were included in this prospective study. The modified Japanese Orthopaedic Association (mJOA) scores and MRI were assessed before surgery and 12 months postoperatively. The anteroposterior diameter (APD), maximum spinal cord compression (MSCC), and area of signal changes in the cord at the compressed and normal levels were measured and compared using MRI and IOUS. Conventional blood flow and CEUS indices (time to peak, ascending slope, peak intensity (PI), and area under the curve (AUC)) at different levels during IOUS were calculated and analysed. Correlations between all indicators and the neurological recovery rate were evaluated. RESULTS: All patients underwent IOUS and intraoperative CEUS, and the total recovery rate was 50.7 ± 33.3%. APD and MSCC improved significantly (p < 0.01). The recovery rate of the hyperechoic lesion group was significantly worse than that of the isoechoic group (p = 0.016). 22 patients were analysed by contrast analysis software. PI was higher in the compressed zone than in the normal zone (24.58 ± 3.19 versus 22.43 ± 2.39, p = 0.019). ΔPI compress-normal and ΔAUC compress-normal of the hyperechoic lesion group were significantly higher than those of the isoechoic group (median 2.19 versus 0.55, p = 0.017; 135.7 versus 21.54, p = 0.014, respectively), and both indices were moderately negatively correlated with the recovery rate (r = - 0.463, p = 0.030; r = - 0.466, p = 0.029). CONCLUSIONS: Signal changes and microvascular perfusion evaluated using CEUS during surgery are valuable predictors of cervical myelopathy prognosis. CLINICAL RELEVANCE STATEMENT: In the spinal cord compression area of degenerative cervical myelopathy, especially in the hyperechoic lesions, intraoperative CEUS showed more significant contrast agent perfusion than in the normal area, and the degree was negatively correlated with the neurological prognosis. KEY POINTS: • Recovery rates in patients with hyperechoic findings were lower than those of patients without lesions detected during intraoperative ultrasound. • The peak intensity of CEUS was higher in compressed zones than in the normal parts of the spinal cord. • Quantitative CEUS comparisons of the peak intensity and area under the curve at the compressed and normal levels of the spinal cord revealed differences that were inversely correlated to the recovery rate.


Assuntos
Medula Cervical , Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Compressão da Medula Espinal/patologia , Estudos Prospectivos , Medula Cervical/diagnóstico por imagem , Medula Cervical/cirurgia , Medula Cervical/patologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Vértebras Cervicais/patologia , Medula Espinal/patologia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/cirurgia , Doenças da Medula Espinal/patologia , Imageamento por Ressonância Magnética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA