Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(4): 993-1001, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078318

RESUMO

Nitrogen (N) and silicon (Si) are important nutritional elements for rice. However, excessive N fertili-zer application and the ignorance of Si fertilizer are common in practice. Straw biochar is rich in Si, which can be used as a potential Si fertilizer. In this study, we conducted a consecutive 3-year field experiment to explore the effects of N fertilizer reduction combined with straw biochar application on rice yield, Si and N nutrition. There were five treatments: conventional N application (180 kg·hm-2, N100), 20% N reduction (N80), 20% N reduction with 15 t·hm-2 biochar (N80+BC), 40% N reduction (N60), and 40% N reduction with 15 t·hm-2 biochar (N60+BC). The results showed that compared with N100, 20% N reduction did not affect the accumulation of Si and N in rice; 40% N reduction reduced foliar N absorption, but significantly increased foliar Si concentration by 14.0%-18.8%; while combined application of biochar significantly increased foliar Si accumulation, with an increase of Si concentration by 38.0%-63.3% and Si absorption by 32.3%-49.9%, but further reduced foliar N concentration. There was a significant negative correlation between Si and N concentration in mature rice leaves, but no correlation between Si and N absorption. Compared with N100, N reduction or combined application of biochar did not affect soil ammonium N and nitrate N, but increased soil pH. Nitrogen reduction combined application of biochar significantly increased soil organic matter by 28.8%-41.9% and available Si content by 21.1%-26.9%, with a significant positive correlation between them. Compared with N100, 40% N reduction reduced rice yield and grain setting rate, while 20% N reduction and combined application of biochar did not influence rice yield and yield components. In summary, appropriate N reduction and combined with straw biochar can not only reduce N fertilizer input, but also improve soil fertility and Si supply, which is a promising fertilization method in double-cropping rice fields.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Silício , Solo/química , Carvão Vegetal , Nitrogênio/análise , Agricultura
2.
Sci Rep ; 12(1): 18440, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323863

RESUMO

In breast conserving surgery (BCS), specimen mammography is one of the most widely used intraoperative methods of assessing margin status. We performed a meta-analysis to evaluate the diagnostic accuracy of specimen mammography. Literature databases including PubMed, Cochrane Library, Web of Science, and EMBASE were searched prior to Jun 2022. A total of 1967 patients were included from 20 studies. A pooled analysis, heterogeneity testing, threshold effect testing, publication bias analysis, and subgroup analyses were performed from extracted data. The pooled weighted values were a sensitivity of 0.55 (95% confidence interval [CI], 0.47-0.63), a specificity of 0.85 (95% CI, 0.78-0.90), a diagnostic odds ratio of 7 (95% CI, 4-12), and a pooled positive likelihood ratio of 3.7 (95% CI 2.6-5.5). The area under the receiver operator characteristic curve was 0.75 (95% CI 0.71-0.78). In the subgroup analysis, the pooled specificity in the positive margin defined as tumor at margin subgroup was lower than the other positive margin definition subgroup (0.82 [95% CI: 0.71, 0.92] vs. 0.87 [95% CI: 0.80, 0.94], p = 0.01). Our findings indicated that specimen mammography was an accurate intraoperative imaging technique for margin assessment in BCS.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Mastectomia Segmentar , Mamografia , Margens de Excisão , Sensibilidade e Especificidade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA