Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Chin Med J (Engl) ; 137(8): 921-935, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527930

RESUMO

ABSTRACT: Caloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD + )-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.


Assuntos
Restrição Calórica , Doenças Cardiovasculares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/fisiologia , Doenças Cardiovasculares/metabolismo , Animais
2.
EBioMedicine ; 101: 104995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350330

RESUMO

RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.


Assuntos
Processamento Alternativo , Doenças Cardiovasculares , Animais , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Fatores de Processamento de RNA/genética
3.
Cell Metab ; 36(1): 7-9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171339

RESUMO

Spinal cord-associated disorders are common in the elderly population; however, the mechanisms underlying spinal aging remain elusive. In a recent Nature paper, Sun et al. systemically analyzed aged spines in nonhuman primates and identified a new cluster of CHIT1-positive microglia that drives motor neuron senescence and subsequent spine aging.


Assuntos
Neurônios Motores , Medula Espinal , Animais , Humanos , Idoso , Envelhecimento/fisiologia , Microglia
4.
Sheng Li Xue Bao ; 75(6): 946-952, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151356

RESUMO

Our previous study has shown that p66Shc plays an important role in the process of myocardial regeneration in newborn mice, and p66Shc deficiency leads to weakened myocardial regeneration in newborn mice. This study aims to explore the role of p66Shc protein in myocardial injury repair after myocardial infarction in adult mice, in order to provide a new target for the treatment of myocardial injury after myocardial infarction. Mouse myocardial infarction models of adult wild-type (WT) and p66Shc knockout (KO) were constructed by anterior descending branch ligation. The survival rate and heart-to-body weight ratio of two models were compared and analyzed. Masson's staining was used to identify scar area of injured myocardial tissue, and myocyte area was determined by wheat germ agglutinin (WGA) staining. TUNEL staining was used to detect the cardiomyocyte apoptosis. The protein expression of brain natriuretic peptide (BNP), a common marker of myocardial hypertrophy, was detected by Western blotting. The results showed that there was no significant difference in survival rate, myocardial scar area, myocyte apoptosis, and heart weight to body weight ratio between the WT and p66ShcKO mice after myocardial infarction surgery. Whereas the protein expression level of BNP in the p66ShcKO mice was significantly down-regulated compared with that in the WT mice. These results suggest that, unlike in neonatal mice, the deletion of p66Shc has no significant effect on myocardial injury repair after myocardial infarction in adult mice.


Assuntos
Infarto do Miocárdio , Estresse Oxidativo , Animais , Camundongos , Peso Corporal , Cicatriz/metabolismo , Camundongos Knockout , Infarto do Miocárdio/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
7.
Signal Transduct Target Ther ; 8(1): 255, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394473

RESUMO

Thoracic aortic aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threating vascular disease due to the risk of aortic rupture and without effective treatments. The current understanding of the pathogenesis of TAA is still limited, especially for sporadic TAAs without known genetic mutation. Sirtuin 6 (SIRT6) expression was significantly decreased in the tunica media of sporadic human TAA tissues. Genetic knockout of Sirt6 in mouse vascular smooth muscle cells accelerated TAA formation and rupture, reduced survival, and increased vascular inflammation and senescence after angiotensin II infusion. Transcriptome analysis identified interleukin (IL)-1ß as a pivotal target of SIRT6, and increased IL-1ß levels correlated with vascular inflammation and senescence in human and mouse TAA samples. Chromatin immunoprecipitation revealed that SIRT6 bound to the Il1b promoter to repress expression partly by reducing the H3K9 and H3K56 acetylation. Genetic knockout of Il1b or pharmacological inhibition of IL-1ß signaling with the receptor antagonist anakinra rescued Sirt6 deficiency mediated aggravation of vascular inflammation, senescence, TAA formation and survival in mice. The findings reveal that SIRT6 protects against TAA by epigenetically inhibiting vascular inflammation and senescence, providing insight into potential epigenetic strategies for TAA treatment.


Assuntos
Aneurisma da Aorta Torácica , Sirtuínas , Humanos , Camundongos , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Inflamação/genética , Angiotensina II/genética , Angiotensina II/farmacologia , Epigênese Genética/genética , Sirtuínas/genética
8.
Eur Heart J ; 44(29): 2746-2759, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377116

RESUMO

AIMS: The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS: Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION: The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.


Assuntos
Sirtuína 2 , Remodelação Vascular , Camundongos , Humanos , Animais , Idoso , Sirtuína 2/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento , Camundongos Knockout
9.
Int J Biol Macromol ; 242(Pt 4): 125151, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270127

RESUMO

Protein post-translational modifications (PTMs) are important regulators of protein functions and produce proteome complexity. SIRT1 has NAD+-dependent deacylation of acyl-lysine residues. The present study aimed to explore the correlation between lysine crotonylation (Kcr) on cardiac function and rhythm in Sirt1 cardiac-specific knockout (ScKO) mice and related mechanism. Quantitative proteomics and bioinformatics analysis of Kcr were performed in the heart tissue of ScKO mice established with a tamoxifen-inducible Cre-loxP system. The expression and enzyme activity of crotonylated protein were assessed by western blot, co-immunoprecipitation, and cell biology experiment. Echocardiography and electrophysiology were performed to investigate the influence of decrotonylation on cardiac function and rhythm in ScKO mice. The Kcr of SERCA2a was significantly increased on Lys120 (1.973 folds). The activity of SERCA2a decreased due to lower binding energy of crotonylated SERCA2a and ATP. Changes in expression of PPAR-related proteins suggest abnormal energy metabolism in the heart. ScKO mice had cardiac hypertrophy, impaired cardiac function, and abnormal ultrastructure and electrophysiological activities. We conclude that knockout of SIRT1 alters the ultrastructure of cardiac myocytes, induces cardiac hypertrophy and dysfunction, causes arrhythmia, and changes energy metabolism by regulating Kcr of SERCA2a. These findings provide new insight into the role of PTMs in heart diseases.


Assuntos
Cardiopatias , Lisina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Camundongos , Arritmias Cardíacas , Cardiomegalia/genética , Lisina/química , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Sirtuína 1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
10.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037595

RESUMO

Enhancer of zeste homolog 2 (EZH2) is an important transcriptional regulator in development that catalyzes H3K27me3. The role of EZH2 in epicardial development is still unknown. In this study, we show that EZH2 is expressed in epicardial cells during both human and mouse heart development. Ezh2 epicardial deletion resulted in impaired epicardial cell migration, myocardial hypoplasia, and defective coronary plexus development, leading to embryonic lethality. By using RNA sequencing, we identified that EZH2 controls the transcription of tissue inhibitor of metalloproteinase 3 (TIMP3) in epicardial cells during heart development. Loss-of-function studies revealed that EZH2 promotes epicardial cell migration by suppressing TIMP3 expression. We also found that epicardial Ezh2 deficiency-induced TIMP3 up-regulation leads to extracellular matrix reconstruction in the embryonic myocardium by mass spectrometry. In conclusion, our results demonstrate that EZH2 is required for epicardial cell migration because it blocks Timp3 transcription, which is vital for heart development. Our study provides new insight into the function of EZH2 in cell migration and epicardial development.


Assuntos
Movimento Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Coração , Animais , Humanos , Camundongos , Movimento Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Coração/crescimento & desenvolvimento
11.
Brain Pathol ; 33(4): e13157, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974636

RESUMO

Mitochondrial encephalomyopathies (ME) are frequently associated with mutations of mitochondrial DNA, but the pathogenesis of a subset of ME (sME) remains elusive. Here we report that haploinsufficiency of a mitochondrial inner membrane protein, Mic60, causes progressive neurological abnormalities with insulted mitochondrial structure and neuronal loss in mice. In addition, haploinsufficiency of Mic60 reduces mitochondrial membrane potential and cellular ATP production, increases reactive oxygen species, and alters mitochondrial oxidative phosphorylation complexes in neurons in an age-dependent manner. Moreover, haploinsufficiency of Mic60 compromises brain glucose intake and oxygen consumption in mice, resembling human ME syndrome. We further discover that MIC60 protein expression declined significantly in human sME, implying that insufficient MIC60 may contribute for pathogenesis of human ME. Notably, systemic administration of antioxidant N-acetylcysteine largely reverses mitochondrial dysfunctions and metabolic disorders in haplo-insufficient Mic60 mice, also restores neurological abnormal symptom. These results reveal Mic60 is required in the maintenance of mitochondrial integrity and function, and likely a potential therapeutics target for mitochondrial encephalomyopathies.


Assuntos
Encefalomiopatias Mitocondriais , Animais , Camundongos , Humanos , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial , Antioxidantes
12.
J Mol Cell Cardiol ; 177: 21-27, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827872

RESUMO

The longevity protein p66Shc is essential for the senescence signaling that is involved in heart regeneration and remodeling. However, the exact role of p66Shc in heart regeneration is unknown. In this study, we found that p66Shc deficiency decreased neonatal mouse cardiomyocyte (CM) proliferation and impeded neonatal heart regeneration after apical resection injury. RNA sequencing and functional verification demonstrated that p66Shc regulated CM proliferation by activating ß-catenin signaling. These findings reveal the critical role of p66Shc in neonatal heart regeneration and provide new insights into senescence signaling in heart regeneration.


Assuntos
Transdução de Sinais , Animais , Camundongos , Fosforilação , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
13.
Adv Healthc Mater ; 12(5): e2202010, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416442

RESUMO

Reactive oxygen species (ROS) have been implicated in multiple cellular processes, and an imbalance in redox homeostasis gives rise to diseases, therefore, reestablishing redox homeostasis is a way to cure. Here, copper-based metal-organic networks (Cu-MON) are generated by one-step reaction using anti-inflammatory and antioxidant baicalein as organic ligand and pro-angiogenic copper as metal ions. Phosphate buffered saline is required for triggering Cu-MON formation, and baicalein regulates the morphology and particle size of Cu-MON. Cu-MON are composed of Cu-baicalein complexes (82.08 wt%) and Cu3 (PO4 )2 ·3H2 O (17.92 wt%), thus exhibit a variable catalase-like activity against different H2 O2 levels due to the reversible change between Cu2+ /Cu1+ /Cu0 species. Intramuscular injection of Cu-MON significantly increases blood flow of ischemic limb in diabetic mice, enhances the relative activities of redox-related enzymes in ischemic muscle, thus effectively ameliorating the oxidative damage. Taken together, through moderate and dynamic "precise homeostasis regulation of cells," Cu-MON can be an efficient therapeutic strategy for peripheral arterial disease with diabetic complications.


Assuntos
Cobre , Diabetes Mellitus Experimental , Camundongos , Animais , Oxirredução , Espécies Reativas de Oxigênio
14.
Proc Natl Acad Sci U S A ; 119(26): e2204289119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727985

RESUMO

Behçet's disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. However, a comprehensive understanding of immune disturbances in BD and how they contribute to BD pathogenesis is lacking. Here, we performed single-cell and bulk RNA sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy donors. We observed prominent expansion and transcriptional changes in monocytes in PBMCs from BD patients. Deciphering the monocyte heterogeneity revealed the accumulation of C1q-high (C1qhi) monocytes in BD. Pseudotime inference indicated that BD monocytes markedly shifted their differentiation toward inflammation-accompanied and C1qhi monocyte-ended trajectory. Further experiments showed that C1qhi monocytes enhanced phagocytosis and proinflammatory cytokine secretion, and multiplatform analyses revealed the significant clinical relevance of this subtype. Mechanistically, C1qhi monocytes were induced by activated interferon-γ (IFN-γ) signaling in BD patients and were decreased by tofacitinib treatment. Our study illustrates the BD immune landscape and the unrecognized contribution of C1qhi monocytes to BD hyperinflammation, showing their potential as therapeutic targets and clinical assessment indexes.


Assuntos
Síndrome de Behçet , Complemento C1q , Monócitos , Síndrome de Behçet/genética , Síndrome de Behçet/imunologia , Complemento C1q/genética , Complemento C1q/imunologia , Humanos , Monócitos/imunologia , RNA-Seq , Análise de Célula Única
16.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419596

RESUMO

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Senescência Celular/genética , Genômica , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
17.
Nat Commun ; 13(1): 1225, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264567

RESUMO

The age-dependent decline in remyelination potential of the central nervous system during ageing is associated with a declined differentiation capacity of oligodendrocyte progenitor cells (OPCs). The molecular players that can enhance OPC differentiation or rejuvenate OPCs are unclear. Here we show that, in mouse OPCs, nuclear entry of SIRT2 is impaired and NAD+ levels are reduced during ageing. When we supplement ß-nicotinamide mononucleotide (ß-NMN), an NAD+ precursor, nuclear entry of SIRT2 in OPCs, OPC differentiation, and remyelination were rescued in aged animals. We show that the effects on myelination are mediated via the NAD+-SIRT2-H3K18Ac-ID4 axis, and SIRT2 is required for rejuvenating OPCs. Our results show that SIRT2 and NAD+ levels rescue the aged OPC differentiation potential to levels comparable to young age, providing potential targets to enhance remyelination during ageing.


Assuntos
Células Precursoras de Oligodendrócitos , Remielinização , Envelhecimento , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Bainha de Mielina , NAD , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Remielinização/fisiologia , Sirtuína 2/genética
18.
J Mol Cell Cardiol ; 162: 43-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437878

RESUMO

Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Idoso , Envelhecimento , Doenças Cardiovasculares/etiologia , Senescência Celular , Humanos , Miócitos de Músculo Liso
19.
Pharmacol Res ; 176: 105969, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758400

RESUMO

Multiple sclerosis (MS) is a Th cell-mediated inflammatory demyelinating autoimmune disease. MS cannot be cured, and long-term drug treatment is still needed for MS patients. In this study, we examined the effect of belinostat, a pan-histone deacetylase inhibitor (HDACi), on experimental autoimmune encephalomyelitis (EAE) and elucidated its mechanism of action. We found that belinostat alleviates the clinical symptoms, histopathological central nervous system (CNS) inflammation and demyelination outcomes in EAE mice. Compared to the MS oral drug dimethyl fumarate (DMF) (100 mg/kg), belinostat (30 mg/kg) treatment exhibited better efficacy in improving the clinical symptoms of EAE mice. Belinostat treatment significantly suppressed the activation of M1 microglia and the proinflammatory cytokine expression; but it had no effects on the M2 microglial polarization. Belinostat also decreased both NO and iNOS levels in LPS-stimulated BV2 microglia. Accordingly, belinostat treatment of EAE mice significantly inhibited activation of the TLR2/MyD88 signaling pathway and downregulated the expression of HDAC3 while upregulating the acetylated NF-κB p65 levels. Taken together, these data demonstrate for the first time that belinostat ameliorates EAE in mice through inhibiting neuroinflammation via suppressing M1 microglial polarization, and implicating belinostat as a potential candidate for the treatment of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA