Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
RSC Adv ; 14(19): 12966-12976, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655476

RESUMO

Surface coating technology is broadly demanded across various fields, including marine and biomedical materials; therefore, a facile and versatile approach is desired. This study proposed an attractive surface coating strategy using photo-crosslinkable benzophenone (BP) moiety for biomaterials application. BP-containing "bioglue" polymer can effectively crosslink with all kinds of surfaces and biomolecules. Upon exposure to ultraviolet (UV) light, free radical reaction from the BP glue facilitates the immobilization of diverse molecules onto different substrates in a straightforward and user-friendly manner. Through either one-step, mixing the bioglue with targeted biomolecules, or two-step methods, pre-coating the bioglue and then adding targeted biomolecules, polyacrylic acid (PAA), cyclic RGD-containing peptides, and proteins (gelatin, collagen, and fibronectin) were successfully immobilized on substrates. After drying the bioglue, targeted biomolecules can still be immobilized on the surfaces preserving their bioactivity. Cell culture on biomolecule-immobilized surfaces using NIH 3T3 fibroblasts and human bone marrow stem cells (hBMSCs) showed significant improvement of cell adhesion and activity compared to the unmodified control in serum-free media after 24 hours. Furthermore, hBMSCs on the fibronectin-immobilized surface showed an increased calcium deposition after 21 days of osteogenic differentiation, suggesting that the immobilized fibronectin is highly bioactive. Given the straightforward protocol and substrate-independent bioglue, the proposed coating strategy is promising in broad-range fields.

2.
ACS Appl Mater Interfaces ; 15(41): 48754-48763, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37793161

RESUMO

The superhydrophobic properties of material surfaces have attracted significant research and practical development in a wide range of applications. In the present study, a superhydrophobic coating was fabricated using a vapor-phase sublimation and deposition process. This process offers several advantages, including a controllable and tunable superhydrophobic property, a dry and solvent-free process that uses well-defined water/ice templates during fabrication, and a coating technology that is applicable to various substrates, regardless of their dimensions or complex geometric configurations. The fabrication process exploits time-dependent condensation to produce ice templates with a controlled surface morphology and roughness. The templates are sacrificed via vapor sublimation, which results in mass transfer of water vapor out of the system. A second vapor source of a polymer precursor is then introduced to the system, and deposition occurs upon polymerization on the iced templates, replicating the same topologies from the iced templates. The continuation of the co-current sublimation and deposition processes finally renders permanent hierarchical structures of the polymer coatings that combine the native hydrophobic property of the polymer and the structured property by the sacrificed ice templates, achieving a level of superhydrophobicity that is tunable from 90° to 164°. The experiments demonstrated the use of [2,2]paracyclophanes as the starting materials for forming the superhydrophobic coatings of poly(p-xylylenes) on substrate surfaces. In comparison to conventional vapor deposition of poly(p-xylylenes), which resulted in dense thin-film coatings with only a moderate water contact angle of approximately 90°, the reported superhydrophobic coatings and fabrication process can achieve a high water contact angle of 164°. Demonstrations furthermore revealed that the proposed coatings are durable while maintaining superhydrophobicity on various substrates, including an intraocular lens and a cardiovascular stent, even against harsh treatment conditions and varied solution compositions used on the substrates.

4.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583476

RESUMO

Direct neuronal reprogramming of somatic cells into induced neurons (iNs) has been recently established as a promising approach to generating neuron cells. Previous studies have reported that the biophysical cues of the in vitro microenvironment are potent modulators in the cell fate decision; thus, the present study explores the effects of a customized pattern (named colloidal self-assembled patterns, cSAPs) on iN generation from human fibroblasts using small molecules. The result revealed that the cSAP, composed of binary particles in a hexagonal-close-packed (hcp) geometry, is capable of improving neuronal reprogramming efficiency and steering the ratio of the iN subtypes. Cells exhibited distinct cell morphology, upregulated cell adhesion markers (i.e., SDC1 and ITGAV), enriched signaling pathways (i.e., Hippo and Wnt), and chromatin remodeling on the cSAP compared to those on the control substrates. The result also showed that the iN subtype specification on cSAP was surface-dependent; therefore, the defined physicochemical cue from each cSAP is exclusive. Our findings show that direct cell reprogramming can be manipulated through specific biophysical cues on the artificial matrix, which is significant in cell transdifferentiation and lineage conversion.

5.
Mater Today Bio ; 16: 100403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36090608

RESUMO

A multicomponent vapour-deposited porous (MVP) coating with combined physical and biochemical properties was fabricated based on a chemical vapour sublimation and deposition process. Multiple components are used based on their natural thermodynamic properties, being volatile and/or nonvolatile, resulting in the sublimation of water vapour (from an iced template), and a simultaneous deposition process of poly-p-xylylene occurs upon radical polymerization into a disordered structure, forming porous coatings of MVP on various substrates. In terms of physical properties, the coating technology exhibits adjustable hydrophobicity by tuning the surface morphology by timed control of the sublimation of the iced template layer from a substrate. However, by using a nonvolatile solution during fabrication, an impregnation process of the deposited poly-p-xylylene on such a solution with tuning contact angles produces an MVP coating with a customizable elastic modulus based on deformation-elasticity theory. Moreover, patterning physical structures with adjustable pore size and/or porosity of the coatings, as well as modulation and compartmentalization to introduce necessary boundaries of microstructures within one MVP coating layer, can be achieved during the proposed fabrication process. Finally, with a combination of defined solutions comprised of both volatile and nonvolatile multicomponents, including functional biomolecules, growth factor proteins, and living cells, the fabrication of the resultant MVP coating serves devised purposes exhibiting a variety of biological functions demonstrated with versatility for cell proliferation, osteogenesis, adipogenesis, odontogenesis, spheroid growth of stem cells, and a complex coculture system towards angiogenesis. Multicomponent porous coating technology is produced based on vapour sublimation and deposition upon radical polymerization that overturns conventional vapour-deposited coatings, resulting in only dense thin films, and in addition, the versatility of adjusting coating physical and chemical properties by exploiting the volatility mechanism of iced solution templates and accommodation of solute substances during the fabrication process. The MVP coating and the proposed fabrication technique represent a simple approach to provide a prospective interface coating layer for materials science and are attractive for unlimited applications.

6.
Mater Today Bio ; 13: 100213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198961

RESUMO

Tissue engineering based on the combined use of isolated cells, scaffolds, and growth factors is widely used; however, the manufacture of cell-preloaded scaffolds faces challenges. Herein, we fabricated a multicomponent scaffold with multiple component accommodations, including bioactive molecules (BMs), such as fibroblast growth factor-2 (FGF-2) and l-ascorbic acid 2-phosphate (A2-P), and living cells of human adipose-derived stem cells (hASCs), within one scaffold construct. We report an innovative fabrication process based on vapor-phased construction using iced templates for vapor sublimation. Simultaneously, the vaporized water molecules were replaced by vapor deposition of poly-p-xylylene (PPX, USP Class VI, highly compatible polymer, FDA-approved records), forming a three-dimensional and porous scaffold matrix. More importantly, a multicomponent modification was achieved based on using nonvolatile solutes, including bioactive molecules of FGF-2 and A2-P, and living cells of hASCs, to prepare iced templates for sublimation. Additionally, the fabrication and construction resulted in a multicomponent scaffold product comprising the devised molecules, cells, and vapor-polymerized poly-p-xylylene as the scaffold matrix. The clean and dry fabrication process did not require catalysts, initiators or plasticizers, and potentially harmful solvents, and the scaffold products were produced in simple steps within hours of the processing time. Cell viability analysis showed a high survival rate (approximately 86.4%) for the accommodated hASCs in the fabricated scaffold product, and a surprising multilineage differentiation potential of hASCs was highly upregulated because of synergistic guidance by the same accommodated FGF-2 and A2-P components. Proliferation and self-renewal activities were also demonstrated with enhancement of the multicomponent scaffold product. Finally, in vivo calvarial defect studies further revealed that the constructed scaffolds provided blood vessels to grow into the bone defect areas with enhancement, and the induced conduction of osteoblast growth also promoted bone healing toward osseointegration. The reported scaffold construction technology represents a prospective tissue engineering scaffold product to enable accommodable and customizable versatility to control the distribution and composition of loading delicate BMs and living hASCs in one scaffold construct and demonstrates unlimited applications in tissue engineering repair and regenerative medicine applications.

7.
Polymers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054631

RESUMO

A facial, versatile, and universal method that breaks the substrate limits is desirable for antifouling treatment. Thin films of functional poly-p-xylylenes (PPX) that are deposited using chemical vapor deposition (CVD) provide a powerful platform for surface immobilization of molecules. In this study, we prepared an alkyne-functionalized PPX coating on which poly (sulfobetaine methacrylate-co-Az) could be conjugated via click chemistry. We found that the conjugated polymers were very stable and inhibited cell adhesion and protein adsorption effectively. The same conjugation strategy could also be applied to conjugate azide-containing poly (ethylene glycol) and poly (NIPAAm). The results indicate that our method provides a simple and robust tool for fabricating antifouling surfaces on a wide range of substrates using CVD technology of functionalized poly (p-xylylenes) for biosensor, diagnostics, immunoassay, and other biomaterial applications.

8.
Nat Commun ; 12(1): 3413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099701

RESUMO

Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.


Assuntos
Materiais Biomiméticos/química , Vapor , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Matriz Extracelular , Humanos , Hidrogéis/química , Camundongos , Neovascularização Fisiológica , Neurogênese , Osteogênese , Ratos
9.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806497

RESUMO

Conventional porous materials are mostly synthesized in solution-based methods involving solvents and initiators, and the functionalization of these porous materials usually requires additional and complex steps. In the current study, a methyl propiolate-functionalized porous poly-p-xylylene material was fabricated based on a unique vapor sublimation and deposition process. The process used a water solution and ice as the template with a customizable shape and dimensions, and the conventional chemical vapor deposition (CVD) polymerization of poly-p-xylylene on such an ice template formed a three-dimensional, porous poly-p-xylylene material with interconnected porous structures. More importantly, the functionality of methyl propiolate was well preserved by using methyl propiolate-substituted [2,2]-paracyclophane during the vapor deposition polymerization process and was installed in one step on the final porous poly-p-xylylene products. This functionality exhibited an intact structure and reactivity during the proposed vapor sublimation and deposition process and was proven to have no decomposition or side products after further characterization and conjugation experiments. The electron-withdrawing methyl propiolate group readily provided efficient alkynes as click azide-terminated molecules under copper-free and mild conditions at room temperature and in environmentally friendly solvents, such as water. The resulting methyl propiolate-functionalized porous poly-p-xylylene exhibited interface properties with clickable specific covalent attachment toward azide-terminated target molecules, which are widely available for drugs and biomolecules. The fabricated functional porous materials represent an advanced material featuring porous structures, a straightforward synthetic approach, and precise and controlled interface click chemistry, rendering long-term stability and efficacy to conjugate target functionalities that are expected to attract a variety of new applications.

10.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374286

RESUMO

A regulatable bioremediation capsule material was synthesized with isolated single-strain bacteria (Bacillus species, B. CMC1) and a regulator molecule (carboxymethyl cellulose, CMC) by a vapor-phased encapsulation method with simple steps of water sublimation and poly-p-xylylene deposition in chemical vapor deposition (CVD) process. Mechanically, the capsule construct exhibited a controllable shape and dimensions, and was composed of highly biocompatible poly-p-xylylene as the matrix with homogeneously distributed bacteria and CMC molecules. Versatility of the encapsulation of the molecules at the desired concentrations was achieved in the vapor-phased sublimation and deposition fabrication process. The discovery of the fabricated capsule revealed that viable living B. CMC1 inhabited the capsule, and the capsule enhanced bacterial growth due to the materials and process used. Biologically, the encapsulated B. CMC1 demonstrated viable and functional enzyme activity for cellulase activation, and such activity was regulatable and proportional to the concentration of the decorated CMC molecules in the same capsule construct. Impressively, 13% of cellulase activity increase was realized by encapsulation of B. CMC1 by poly-p-xylylene, and a further 34% of cellulase activity increase was achieved by encapsulation of additional 2.5% CMC. Accordingly, this synergistic effectiveness of the capsule constructs was established by combining enzymatic B. CMC1 bacteria and its regulatory CMC by poly-p-xylylene encapsulation process. This reported encapsulation process exhibited other advantages, including the use of simple steps and a dry and clean process free of harmful chemicals; most importantly, the process is scalable for mass production. The present study represents a novel method to fabricate bacteria-encapsulated capsule for cellulose degradation in bioremediation that can be used in various applications, such as wastewater treatment and transforming of cellulose into glucose for biofuel production. Moreover, the concept of this vapor-phased encapsulation technology can be correspondingly used to encapsulate multiple bacteria and regulators to enhance the specific enzyme functions for degradation of various organic matters.

11.
ACS Appl Bio Mater ; 3(9): 5678-5686, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021799

RESUMO

In this study, a porous, three-dimensional material of parylene (poly-p-xylylene) incorporating keratin was fabricated. As an FDA-approved material, parylene is highly stable and biocompatible. Keratin is an abundant natural material that can enhance cell adhesion and wound healing. A unique vapor deposition construction technique dispersed keratin homogenously in the parylene system. Instead of using a conventional template, a sublimating template was applied. This composite porous scaffold was investigated mechanically and biologically. In addition, human adipose stem cells were cultured on the scaffold. The synergistic functions, including biocompatibility, permeability, cell adhesion, and stem cell differentiation, were investigated. A mouse excisional wound-healing model further verified that using the porous composite scaffold with stem cells accelerated the wound healing process, supporting its in vivo efficacy. The positive results demonstrated that this material has the potential to serve as a wound repair platform.

12.
ACS Appl Bio Mater ; 3(10): 7193-7201, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019377

RESUMO

A scaffold was fabricated to synergistically encapsulate living human adipose-derived stem cells (hASCs) and platelet-rich plasma (PRP) based on a vapor-phase sublimation and deposition process. During the process, ice templates were prepared using sterile water as the solvent and were used to accommodate the sensitive living cells and PRP molecules. Under controlled processing conditions, the ice templates underwent vapor sublimation to evaporate water molecules, while at the same time, vapor-phase deposition of poly-p-xylylene (Parylene, USP Class VI highly biocompatible) occurred to replace the templates, and the final construction yielded a scaffold with Parylene as the matrix, with simultaneously encapsulated living hASCs and PRP molecules. Evaluation of the fabricated synergistic scaffold for the proliferation activities toward the encapsulated hASCs indicated significant augmentation of cell proliferation contributed by the PRP ingredients. In addition, osteogenic activity in the early stage by alkaline phosphatase expression and later stage with calcium mineralization indicated significant enhancement toward osteogenetic differentiation of the encapsulated hASCs, which were guided by the PRP molecules. By contrast, examinations of adipogenic activity by lipid droplet formation revealed an inhibition of adipogenesis with decreased intracellular lipid accumulation, and a statistically significant downregulation of adipogenic differentiation was postulated for the scaffold products when compared to the osteogenetic results and the control experiments. The reported fabrication method featured a clean and simple process to construct scaffolds that combined delicate living hASCs and PRP molecules inside the structure. The resultant synergistic scaffold and the selected commercially available hASCs and PRP are emerging as tissue engineering tools that provide multifunctionality for tissue repair and regeneration.

13.
ACS Biomater Sci Eng ; 6(4): 1836-1851, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455323

RESUMO

The surface properties of biomaterials are crucial at controlling biological interactions. Cells or tissues sense different stimuli from surfaces and respond accordingly. A number of studies have reported that fabricating complex stimuli-presenting surfaces is beneficial for mimicking and understanding the in vivo scenario where multi-physicochemical cues are present. Biological responses toward these surfaces could be either negative, such as immune responses, or positive, such as tissue regeneration. An ideal material surface should, therefore, be multifunctional, triggering the desired biological process and suppressing the unwanted side effects. The methods for material surface decoration can be very sophisticated, depending on the applications such as biosensors, medical devices, and/or implants. To date, decorating material surfaces with complex chemistries and topographies is still challenging, and methods are not straightforward. The majority of the methods require multiple steps and combinational approaches that include mask-based techniques, lithography, wet or dry etching, wet chemistry, or vapor-based coatings, among others. Although these methods have been established in the laboratory, easy-to-access and straightforward approaches need to be explored. This Review summarizes the state-of-the-art techniques for generating patterned multichemical and multitopographic signals on material surfaces, and the potential of having these surfaces in biointerface applications.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Próteses e Implantes , Propriedades de Superfície
14.
Polymers (Basel) ; 11(10)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623334

RESUMO

Wound dressing, which prevents dehydration and provides a physical barrier against infection to wound beds, can improve wound healing. The interactions between extracellular matrix (ECM) and growth factors is critical to the healing process. Electrospun nanofibers are promising templates for wound dressings due to the structure similarity to ECM of skin. Otherwise, the ECM secreted by human adipose-derived stem cells (hASCs) is rich in growth factors known to enhance wound healing. Accordingly, we propose that the PLGA nanofibrous template incorporated with hASCs-secreted ECM may enhance wound healing. In this study, PLGA nanofibrous matrixes with an aligned or a random structure were prepared by electrospinning. Human ASCs cultured on the aligned matrix had a better viability and produced a larger amount of ECM relative to that of random one. After 7 days' cultivation, the hASCs on aligned PLGA substrates underwent decellularization to fabricate cECM/PLGA dressings. By using immunohistochemical staining against F-actin and cell nucleus, the removal of cellular components was verified. However, the type I collagen and laminin were well preserved on the cECM/PLGA nanofibrous matrixes. In addition, this substrate was hydrophilic, with appropriate mechanical strength to act as a wound dressing. The L929 fibroblasts had good activity, survival and proliferation on the cECM/PLGA meshes. In addition, the cECM/PLGA nanofibrous dressings improved the wound healing of surgically created full-thickness skin excision in a mouse model. This hASCs-secreted ECM incorporated into electrospun PLGA nanofibrous could be a promising dressing for enhancing wound healing.

15.
Polymers (Basel) ; 11(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569561

RESUMO

An erasable coating was prepared to modify material surfaces with accessibilities, including specific conjugation, elimination of the conjugated chemistry/function, and the reactivation of a second new chemistry/function. The coating was realized based on a vapor-deposited functional poly-p-xylylene coating composed of an integrated 3-((3-methylamido)-disulfanyl)propanoic acid functional group, resulting in not only chemical reactivity, but also a disulfide interchange mechanism. Mechanically, the coating was robust in terms of the thermal stability and adhesive property on a variety of substrate materials. Chemically, the anchoring site of carboxylic acid was accessible for specific conjugation, and a disulfide bridge moiety was used to disengage already installed functions/properties. In addition, the homogeneous nature of the vapor-phased coating technique is known for its morphology/thickness and distribution of the functional moiety, which allowed precision to address the installation or erasure of functions and properties. Characterization of the precisely confined hydrophilic/hydrophobic wetting property and the alternating reversibility of this wetting property on the same surface was achieved.

17.
Sci Rep ; 9(1): 7644, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113975

RESUMO

Surface modification layers are performed on the surfaces of biomaterials and have exhibited promise for decoupling original surface properties from bulk materials and enabling customized and advanced functional properties. The physical stability and the biological compatibility of these modified layers are equally important to ensure minimized delamination, debris, leaching of molecules, and other problems that are related to the failure of the modification layers and thus can provide a long-term success for the uses of these modified layers. A proven surface modification tool of the functionalized poly-para-xylylene (PPX) system was used as an example, and in addition to the demonstration of their chemical conjugation capabilities and the functional properties that have been well-documented, in the present report, we additionally devised the characterization protocols to examine stability properties, including thermostability and adhesive strength, as well as the biocompatibility, including cell viability and the immunological responses, for the modified PPX layers. The results suggested a durable coating stability for PPXs and firmly attached biomolecules under these stability and compatibility tests. The durable and stable modification layers accompanied by the native properties of the PPXs showed high cell viability against fibroblast cells and macrophages (MΦs), and the resulting immunological activities created by the MΦs exhibited excellent compatibility with non-activated immunological responses and no indication of inflammation.


Assuntos
Materiais Biocompatíveis/química , Células 3T3 , Animais , Materiais Biocompatíveis/efeitos adversos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Polímeros/química , Células RAW 264.7 , Xilenos/química
18.
ACS Biomater Sci Eng ; 5(4): 1753-1761, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405551

RESUMO

A prospective design for interface properties is enabled to perform precise functionalization, erasure capability for existing properties, reactivation of surface functionality to a second divergent property. A vapor-deposited, 2-nitro-5-(prop-2-yn-1-yloxy)methylbenzyl carbamate-functionalized poly-para-xylylene coating is synthesized in this study to realize such tasks by offering the accessibility of the azide/alkyne click reaction, an integrated photochemical decomposition/cleavage moiety, and the reactivation sites of amines behind the cleavage that allow the installation of a second surface function. With the benefits from the mild processing conditions used for the coatings and the rapid response of the photochemical reaction, the creation of sophisticated interface properties and localized chemical compositions was elegantly demonstrated with a hybrid functionality including a confined hydrophlic/hydrophobic wetting property and/or a cell adherent/repellent platform on such a coating surface.

19.
Colloids Surf B Biointerfaces ; 174: 360-366, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472622

RESUMO

Surface modification with functional materials, such as anti-fouling or thermal responsive polymers, on biomedical devices benefits their clinical performance. Simple and versatile technologies, which could be applied to a wide variety of substrates, are still highly desirable. Chemical vapor deposition (CVD) of 4-benzoyl-[2,2]paracyclophane (Benzoyl-PPX) layers attracts much attention because the photoreactive platform could be deposited onto almost every substrate for the conjugation of functional molecules. In this study, poly(ethylene glycol) (PEG) was conjugated onto Benzoyl-PPX via UV illumination. The deposited PEG films could effectively reduce protein adsorption and cell attachment. The low-fouling properties of the PEG films were positively correlated with the molecular weight and concentration of PEG. We found that a PEG film, thicker than 16 nm and with a water contact angle of 30°, is a prerequisite for effective inhibition of cell attachment. We also demonstrated that the PEG coating was stable under acidic and basic environments. Furthermore, poly(N-isopropyl acrylamide), PNIPAAm, could be also tethered on the Benzoyl-PPX via UV illumination, and possessed thermal-responsive properties. Intact cell sheets could be released from the PNIPAAm film by decreasing culture temperature. The results indicate that Benzoyl-PPX is an excellent photoreactive platform for the conjugation of functional polymers for modulation of cell attachment.


Assuntos
Adesão Celular/fisiologia , Fibroblastos/fisiologia , Processos Fotoquímicos , Compostos Policíclicos/química , Polímeros/metabolismo , Xilenos/química , Animais , Células Cultivadas , Fibroblastos/citologia , Camundongos , Polímeros/química
20.
Colloids Surf B Biointerfaces ; 175: 545-553, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579055

RESUMO

The field of implantable electronics relies on using silicon materials due to the merits of a well-established fabrication process and favorable properties; of particular interest is the surface modification of such materials. In the present study, we introduce a surface modification technique based on coatings of functionalized Parylene on silicon substrates, where the modified layers provide a defined cell adhesion capability for the resultant silicon materials/devices. Functionalization of Parylene was achieved during a one-step chemical vapor deposition (CVD) polymerization process, forming NHS ester-functionalized Parylene, and subsequent RGD attachment was enabled via a conjugation reaction between the NHS ester and amine groups. The modification procedures additionally provided a clean and gentle approach to avoid thermal excursions, intense irradiation, chemicals, or solvents that might damage delicate structures or sensitive molecules on the devices. The modification layers exhibited excellent mechanical strength on the substrate, meeting the high standards of the American Society for Testing and Materials (ASTM), and the resultant cell adherence property was verified by a centrifugation assay and the analysis of attached cell morphologies; the results collectively demonstrated robust and sustainable modification layers of the NHS ester-functionalized Parylene and confirmed that the cell-adherence property imparted by using this facile modification technique was effective. The modification technology is expected to benefit the design of prospective interface properties for silicon-based devices and related industrial products.


Assuntos
Materiais Revestidos Biocompatíveis/química , Oligopeptídeos/química , Polímeros/química , Silício/química , Xilenos/química , Células 3T3 , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Eletrônica Médica/instrumentação , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Ésteres , Camundongos , Polímeros/farmacologia , Próteses e Implantes , Silício/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Volatilização , Xilenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA