Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 74(3): 443-460, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35770642

RESUMO

The mammalian internal circadian clock system has been evolved to adapt to the diurnal changes in the internal and external environment of the organism to regulate diverse physiological functions, such as the sleep-wake cycle and feeding rhythm, thereby coordinating the rhythmic changes of energy demand and nutrition supply in each diurnal cycle. The circadian clock regulates glucose metabolism, lipid metabolism, and hormones secretion in diverse tissues and organs, including the liver, skeletal muscle, pancreas, heart, and vessels. As a special "organ" of the host, the gut microbiota, together with the intestinal microenvironment (tissues, cells, and metabolites) in a co-evolutionary process, constitutes a micro-ecosystem and plays an important role in the process of nutrient digestion and absorption in the intestine of the host. In recent years, accumulating evidence indicates that the compositions, quantities, colonization, and functional activities of the gut microbiota exhibit significant circadian variations, which are closely related to the changes of various physiological functions under the regulation of host circadian clock system. In addition, several studies have shown that the gut microbiota can produce many important metabolites such as the short-chain fatty acids through the degradation of indigestive dietary fibers. A portion of gut microbiota-derived metabolites can regulate the circadian clock system and metabolism of the host. This article mainly discusses the interaction between the host circadian clock system and the gut microbiota, and highlights its influence on energy metabolism of the host, providing a novel clues and thought for the prevention and treatment of metabolic diseases.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Ecossistema , Metabolismo Energético , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos/fisiologia , Mamíferos
2.
Oncotarget ; 9(4): 5184-5196, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435171

RESUMO

Brucella is an intracellular bacterium that causes the zoonosis brucellosis worldwide. Alveolar macrophages (AM) constitute the main cell target of inhaled Brucella. Brucella thwarts immune surveillance and evokes endoplasmic reticulum (ER) stress to replicate in macrophages via virulence factors. The GntR regulators family was concentrated as an important virulence factor in controlling virulence and intracellular survival of Brucella. However, the detailed underlying mechanism for the host-pathogen interaction is poorly understood. In this study the BSS2_II0438 mutant (ΔGntR) was constructed. The type IV secretion system (T4SS) virulence factor genes (VirB2, VirB6, and VirB8) were down-expression in ΔGntR. ΔGntR could infect and proliferate to high titers in GAMs without a significant difference compared with the parental strain. ΔGntR infection increased the expression of ER stress marker genes GRP78, ATF6, and PERK in the early stages of its intracellular cycle but decreased the expression of these genes in the late stages. ΔGntR increased greatly the number of Brucella CFUs in the inactive ER stress state in GAMs. Meanwhile, ΔGntR infection increased the levels of IFN-γ, IL-1ß, and TNF-α, indicating ΔGntR could induce the secretion of inflammatory but not anti-inflammatory cytokines IL-10. Taken together, our results clarified the role of the GntR in B. suis. S2 virulence expression and elucidated that GntR is potentially involved in the signaling pathway of the Brucella-induced UPR and inflammatory response in GAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA