Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neurophotonics ; 11(3): 034310, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38881627

RESUMO

Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results: We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions: Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37986755

RESUMO

SIGNIFICANCE: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM: Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS: We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS: Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

3.
Adv Sci (Weinh) ; 10(35): e2303381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882348

RESUMO

The study of aging and neurodegenerative processes in the human brain requires a comprehensive understanding of cytoarchitectonic, myeloarchitectonic, and vascular structures. Recent computational advances have enabled volumetric reconstruction of the human brain using thousands of stained slices, however, tissue distortions and loss resulting from standard histological processing have hindered deformation-free reconstruction. Here, the authors describe an integrated serial sectioning polarization-sensitive optical coherence tomography (PSOCT) and two photon microscopy (2PM) system to provide label-free multi-contrast imaging of intact brain structures, including scattering, birefringence, and autofluorescence of human brain tissue. The authors demonstrate high-throughput reconstruction of 4 × 4 × 2cm3 sample blocks and simple registration between PSOCT and 2PM images that enable comprehensive analysis of myelin content, vascular structure, and cellular information. The high-resolution 2PM images provide microscopic validation and enrichment of the cellular information provided by the PSOCT optical properties on the same sample, revealing the densely packed fibers, capillaries, and lipofuscin-filled cell bodies in the cortex and white matter. It is  shown that the imaging system enables quantitative characterization of various pathological features in aging process, including myelin degradation, lipofuscin accumulation, and microvascular changes, which opens up numerous opportunities in the study of neurodegenerative diseases in the future.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Microscopia/métodos , Lipofuscina , Encéfalo/diagnóstico por imagem , Neuroimagem
4.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824623

RESUMO

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Assuntos
Área de Broca , Córtex Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
5.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293092

RESUMO

The study of neurodegenerative processes in the human brain requires a comprehensive understanding of cytoarchitectonic, myeloarchitectonic, and vascular structures. Recent computational advances have enabled volumetric reconstruction of the human brain using thousands of stained slices, however, tissue distortions and loss resulting from standard histological processing have hindered deformation-free reconstruction of the human brain. The development of a multi-scale and volumetric human brain imaging technique that can measure intact brain structure would be a major technical advance. Here, we describe the development of integrated serial sectioning Polarization Sensitive Optical Coherence Tomography (PSOCT) and Two Photon Microscopy (2PM) to provide label-free multi-contrast imaging, including scattering, birefringence and autofluorescence of human brain tissue. We demonstrate that high-throughput reconstruction of 4×4×2cm3 sample blocks and simple registration of PSOCT and 2PM images enable comprehensive analysis of myelin content, vascular structure, and cellular information. We show that 2µm in-plane resolution 2PM images provide microscopic validation and enrichment of the cellular information provided by the PSOCT optical property maps on the same sample, revealing the sophisticated capillary networks and lipofuscin filled cell bodies across the cortical layers. Our method is applicable to the study of a variety of pathological processes, including demyelination, cell loss, and microvascular changes in neurodegenerative diseases such as Alzheimer's disease (AD) and Chronic Traumatic Encephalopathy (CTE).

6.
Nat Methods ; 20(7): 1095-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36973547

RESUMO

Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, which is voltage imaging below the shot-noise limit. This framework involved developing positive-going voltage indicators with improved spike detection (SpikeyGi and SpikeyGi2); a two-photon microscope ('SMURF') for kilohertz frame rate imaging across a 0.4 mm × 0.4 mm field of view; and a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise-limited signals. Through these combined advances, we achieved simultaneous high-speed deep-tissue imaging of more than 100 densely labeled neurons over 1 hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.


Assuntos
Microscopia , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Algoritmos , Cálcio
7.
PLoS Biol ; 20(10): e3001440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301995

RESUMO

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/fisiologia , Circulação Cerebrovascular
8.
IEEE Trans Biomed Eng ; 69(12): 3645-3656, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35560084

RESUMO

OBJECTIVE: Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast. METHODS: We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples. RESULTS: We demonstrated the automatic extraction of the vessels down to a 20 µm in diameter using a filtering strategy followed by a graphing representation and characterization of the geometrical properties of microvascular network in 3D. We also showed the ability to extend this processing strategy to extract axonal fiber bundles from the volumetric OCT image. CONCLUSION: This method provides a viable tool for quantitative characterization of volumetric microvascular network as well as the axonal bundle properties in normal and pathological tissues of the ex vivo human brain.


Assuntos
Imageamento Tridimensional , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Técnicas Histológicas
9.
Sci Rep ; 12(1): 363, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013441

RESUMO

Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Bainha de Mielina , Neuroimagem , Neurônios/química , Tomografia de Coerência Óptica , Adulto , Idoso , Encéfalo/citologia , Encéfalo/metabolismo , Cadáver , Feminino , Humanos , Imageamento Tridimensional , Lasers , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Espalhamento de Radiação
10.
Nat Commun ; 12(1): 6638, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789730

RESUMO

Understanding brain function requires monitoring local and global brain dynamics. Two-photon imaging of the brain across mesoscopic scales has presented trade-offs between imaging area and acquisition speed. We describe a flexible cellular resolution two-photon microscope capable of simultaneous video rate acquisition of four independently targetable brain regions spanning an approximate five-millimeter field of view. With this system, we demonstrate the ability to measure calcium activity across mouse sensorimotor cortex at behaviorally relevant timescales.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/fisiologia , Imagem Óptica/instrumentação , Animais , Cálcio/metabolismo , Desenho de Equipamento , Camundongos , Neurônios/citologia , Córtex Sensório-Motor/citologia , Córtex Sensório-Motor/fisiologia
11.
Neurophotonics ; 7(4): 045005, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33094126

RESUMO

Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue's optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2'-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model.

12.
Neurophotonics ; 7(1): 015005, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042854

RESUMO

Animal models of stroke are used extensively to study the mechanisms involved in the acute and chronic phases of recovery following stroke. A translatable animal model that closely mimics the mechanisms of a human stroke is essential in understanding recovery processes as well as developing therapies that improve functional outcomes. We describe a photothrombosis stroke model that is capable of targeting a single distal pial branch of the middle cerebral artery with minimal damage to the surrounding parenchyma in awake head-fixed mice. Mice are implanted with chronic cranial windows above one hemisphere of the brain that allow optical access to study recovery mechanisms for over a month following occlusion. Additionally, we study the effect of laser spot size used for occlusion and demonstrate that a spot size with small axial and lateral resolution has the advantage of minimizing unwanted photodamage while still monitoring macroscopic changes to cerebral blood flow during photothrombosis. We show that temporally guiding illumination using real-time feedback of blood flow dynamics also minimized unwanted photodamage to the vascular network. Finally, through quantifiable behavior deficits and chronic imaging we show that this model can be used to study recovery mechanisms or the effects of therapeutics longitudinally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA