RESUMO
The growth of artificial intelligence leads to a computational burden in solving non-deterministic polynomial-time (NP)-hard problems. The Ising computer, which aims to solve NP-hard problems faces challenges such as high power consumption and limited scalability. Here, we experimentally present an Ising annealing computer based on 80 superparamagnetic tunnel junctions (SMTJs) with all-to-all connections, which solves a 70-city traveling salesman problem (TSP, 4761-node Ising problem). By taking advantage of the intrinsic randomness of SMTJs, implementing global annealing scheme, and using efficient algorithm, our SMTJ-based Ising annealer outperforms other Ising schemes in terms of power consumption and energy efficiency. Additionally, our approach provides a promising way to solve complex problems with limited hardware resources. Moreover, we propose a cross-bar array architecture for scalable integration using conventional magnetic random-access memories. Our results demonstrate that the SMTJ-based Ising computer with high energy efficiency, speed, and scalability is a strong candidate for future unconventional computing schemes.
RESUMO
When medical metallic materials are implanted in the body and come into contact with the body fluid environment, proteins will be rapidly adsorbed on the surface and affect the corrosion process of the material. Currently, there is no uniform understanding of the effect of protein adsorption on the corrosion behavior of materials due to the limitations of the nature of metal materials, protein concentrations, and different media environments. The effect of various bovine serum albumin (BSA) concentrations in artificial plasma (AP) on the corrosion behavior of pure Zn during 14 days of immersion was investigated in this research. The corrosion rate of pure Zn was slowed down by the addition of BSA, and the decelerating effect of lower protein concentration on the corrosion rate of Zn was more significant in the initial stage of immersion. With prolonging the immersion time, the corrosion rate of pure Zn in different media slowed down and stabilized, and the corrosion rates of pure Zn showed a decreasing trend with an increase of BSA concentration. Furthermore, the Langmuir adsorption isotherm model was utilized to study the relationship between the BSA concentration and corrosion behavior of pure Zn and to analyze the role of proteins in the degradation mechanism of pure Zn. This work could be useful for further exploration of potential clinical applications of zinc alloys.
Assuntos
Soroalbumina Bovina , Zinco , Ligas , Corrosão , Zinco/farmacologiaRESUMO
Single-crystal structures of myo-inositol complexes with erbium ([Er2(C6H11O6)2(H2O)5Cl2]Cl2(H2O)4, denoted ErI hereafter) and strontium (Sr(C6H12O6)2(H2O)2Cl2, denoted SrI hereafter) are described. In ErI, deprotonation occurs on an OH of myo-inositol, although the complex is synthesized in an acidic solution, and the pKa values of all of the OHs in myo-inositol are larger than 12. The deprotonated OH is involved in a µ2-bridge. The polarization from two Er3+ ions activates the chemically relatively inert OH and promotes deprotonation. In the stable conformation of myo-inositol, there are five equatorial OHs and one axial OH. The deprotonation occurs on the only axial OH, suggesting that the deprotonation possesses characteristics of regioselectivity/chiral selectivity. Two Er3+ ions in the µ2-bridge are stabilized by five-membered rings formed by chelating Er3+ with an O-C-C-O moiety. As revealed by the X-ray crystallography study, the absolute values of the O-C-C-O torsion angles decrease from â¼60 to â¼45° upon chelating. Since the O-C-C-O moiety is within a six-membered ring, the variation of the torsion angle may exert distortion of the chair conformation. Quantum chemistry calculation results indicate that an axial OH flanked by two equatorial OHs (double ax-eq motif) is favorable for the formation of a µ2-bridge, accounting for the selectivity. The double ax-eq motif may be used in a rational design of high-performance catalysts where deprotonation with high regioselectivity/chiral selectivity is carried out.
Assuntos
Inositol , Catálise , Cristalografia por Raios X , Inositol/química , Modelos Moleculares , Conformação MolecularRESUMO
Ultra-high dose rate FLASH irradiation (FLASH-IR) has got extensive attention since it may provide better protection on normal tissues while maintain tumor killing effect compared with conventional dose rate irradiation. The FLASH-IR induced protection effect on normal tissues is exhibited as radio-resistance of the irradiated normal cells, and is suggested to be related to oxygen depletion. However, the detailed cell death profile and pathways are still unclear. Presently normal mouse embryonic fibroblast cells were FLASH irradiated (â¼109 Gy/s) at the dose of â¼10-40 Gy in hypoxic and normoxic condition, with ultra-fast laser-generated particles. The early apoptosis, late apoptosis and necrosis of cells were detected and analyzed at 6, 12, and 24 h post FLASH-IR. The results showed that FLASH-IR induced significant early apoptosis, late apoptosis and necrosis in normal fibroblast cells, and the apoptosis level increased with time, in either hypoxic or normoxic conditions. In addition, the proportion of early apoptosis, late apoptosis and necrosis were significantly lower in hypoxia than that of normoxia, indicating that radio-resistance of normal fibroblast cells under FLASH-IR can be enhanced by hypoxia. To further investigate the apoptosis related profile and potential pathways, mitochondria dysfunction cells resulting from loss of cytochrome c (cyt c-/-) were also irradiated. The results showed that compared with irradiated normal cells (cyt c+/+), the late apoptosis and necrosis but not early apoptosis proportions of irradiated cyt c-/- cells were significant decreased in both hypoxia and normoxia, indicating mitochondrial dysfunction increased radio-resistance of FLASH irradiated cells. Taken together, to our limited knowledge, this is the first report shedding light on the death profile and pathway of normal and cyt c-/- cells under FLASH-IR in hypoxic and normoxic circumstances, which might help us improve the understanding of the FLASH-IR induced protection effect in normal cells, and thus might potentially help to optimize the future clinical FLASH treatment.
RESUMO
Single-crystal structures of five lanthanide-erythritol complexes are reported. The analysis of the chemical compositions and scrutinization of structural features in the single-crystal data of the complexes led us to find that unexpected deprotonation occurs on the OH group of erythritol of three complexes. Considering these complexes were prepared in acidic environments, where spontaneous ionization on an OH group is suppressed, we suggest metal ions play an important role in promoting the proton transfer. To find out why the chemically inert OH is activated, the single-crystal structures of 63 rare-earth complexes containing organic ligands with multiple hydroxyl groups (OLMHs) were surveyed. The formation of µ2-bridges turns out to be directly relevant to the occurrence of deprotonation. When an OH group from an OLMH molecule participates in the formation of a µ2-bridge, the polarization ability of the metal ions becomes strong enough to promote the deprotonation on the OH group. The above structural characteristics may be useful in the rational design of catalysts that can activate the chemically inert OH group and promote the relevant chemical conversions.
RESUMO
Systematic Absence of Cross Peaks (SACPs) in a two-dimensional (2D) asynchronous spectrum, a sensitive indicator of the signal purity, is very important in analyzing bilinear data. However, identification of SACPs in practice remains a challenge because of noise in the corresponding 2D asynchronous spectrum. We firstly show that SACP can be identified via a statistical test using a large amount of 2D asynchronous spectra. To meet the practical demand that SACPs must be identified based on a single 2D asynchronous spectrum in many cases, we use a 2D quotient spectrum (Q (x, y)) as an effective auxiliary tool to recognize SACPs. The expectation of Q(x, y) is zero when (x, y) is within SACP or background regions in the corresponding 2D asynchronous spectrum. When (x, y) is in a cross-peak region, the expectation of the absolute value of Q(x, y) is a constant regardless of whether the cross-peak in a 2D asynchronous spectrum is strong or weak. Thus, a unified threshold can be set up to differentiate the SACP region from cross-peak region via the auxiliary 2D quotient spectrum. We have applied this approach on two real-world examples and satisfactory results have been obtained. This result demonstrates that the statistical test with a 2D quotient spectrum is applicable in real-world systems.
RESUMO
In modern ion implanters, a plasma flood gun (PFG) is used to neutralize wafer charge during the doping process, preventing the breakdown of floating wafers caused by the space charge accumulation. Typically, there are two kinds of PFGs, namely, dc arc discharge with filament and RF discharge. As a PFG, the filament one has limited lifetime and cannot avoid metallic contamination because of the thermal emitting filament. RF discharge PFG has been developed to solve these problems, including prolonging the source lifetime and avoiding metal pollution. Recently, a 2.45 GHz electron cyclotron resonance (ECR) ion source is also regarded as a potential choice for PFG. However, the dimension of the 2.45 GHz ECR source system including the size of the source itself and its meter's length RF subsidiary limits its application within an ion implanter. At Peking University, a miniaturized 2.45 GHz permanent magnet electron cyclotron resonance plasma flood gun with a coaxial RF transmission line has been built and tested. The dimensions of the ECR source body are Φ60 mm × Φ88 mm with a Φ30 mm × Φ40 mm plasma chamber. Its RF transmission line consists of a 200 W microwave generator, a 30 cm coaxial line, a 7 cm coaxial-to-waveguide transducer, and a microwave window that also serves as a vacuum seal. In continuous wave experiments, the electron extraction currents can be as high as 8.8 mA at an input RF power of 22 W with argon gas. The gas flow is less than 1.0 SCCM for this test.
RESUMO
A 2.45 GHz microwave-driven ion source for the generation of multicharged ions has been designed and built at Peking University recently. The magnetic field configuration of this ion source is a minimum-B type with a combination of a hexapole field and an axial mirror field. Argon was selected as the first tested beam generated by this ion source. A 63 µA Ar4+ ion beam at 35 kV extraction voltage was obtained in the pulsed mode (50 Hz/500 µs). Without the hexapole magnetic field, the highest charge state was only Ar2+, and no Ar4+ ion beam was detected. The comparison between the two sets of experimental results with different magnetic configurations has proven the rationality of the production of multicharged ions with this ion source. Both experimental results and discussion will be presented in this paper.
RESUMO
At Peking University (PKU), experimental research as well as theoretical study on how to produce high intense H+, H2 +, or H3 + dominated ion beams with a compact permanent magnet 2.45 GHz electron cyclotron resonance (PMECR) ion source have been continuously carried out in the past few decades. Based on the comprehension of hydrogen plasma processes inside a 2.45 GHz PMECR discharge chamber, a three-phase diagram of ion fraction dominant regions that illustrates the relationship between the H+, H2 +, and H3 + ion species and working parameters was presented. Meanwhile, a numerical model based on the particle population balance equations was developed for quantitative comprehension of electron cyclotron heated hydrogen plasma. Calculated results of H+, H2 +, and H3 + fractions against gas pressure, microwave density, and wall material obtained with this numerical model agree well with the measured ones. Recently, a miniaturized ECR ion source has been developed, and a 52 mA hydrogen beam was extracted. Under the guidance of the model, H+, H2 +, and H3 + beams with a fraction of 88%, 80%, and 82%, respectively, were obtained with this miniaturized ECR ion source under suitable working parameters. A PMECR ion source for a proton therapy facility has been built at PKU recently. A 34 mA beam H+ fraction of 91% was obtained at the first attempt.
RESUMO
With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.
Assuntos
Lasers , Modelos Teóricos , Aceleradores de Partículas , Terapia com Prótons/instrumentação , Neoplasias/radioterapiaRESUMO
The coordination structures formed by calcium complexes with nicotinamide (na), isonicotinamide (ina) and picolinamide (pa) and praseodymium bromide-na are reported. The structures of CaCl2·(C6H6N2O)2·2H2O (Ca-na), CaCl2·(C6H6N2O)2·4H2O (Ca-ina), CaCl2·(C6H6N2O)2·5H2O (Ca-pa) and PrBr3·(C6H6N2O)2·6H2O (PrBr-na) in the solid state have been characterized by X-ray single crystal diffraction, FTIR, FIR, THz and Raman spectroscopies. Carbonyl oxygen of nicotinamide is coordinated to Ca(2+), but it is O-monodentate (carbonyl oxygen) and N,O-bidentate ligand (pyridyl nitrogen and carbonyl oxygen) for Pr(3+) to form a chain structure in PrBr-na. For isonicotinamide, only carbonyl oxygen atom is coordinated to Ca(2+). Pyridyl nitrogen and carbonyl oxygen of picolinamide are coordinated to Ca(2+) to form a five-membered ring structure. The crystal structure and spectroscopic results indicate the differences of the coordination of Ca and Pr ions, the changes of hydrogen bonds and conformation of the ligands induced by complexation. Unlike transition metal ions, Sr(2+) or lanthanide ions, Ca(2+) is inclined to coordinate to carbonyl oxygen atoms of the ligands.
Assuntos
Brometos/química , Cloreto de Cálcio/química , Cálcio/química , Niacinamida/química , Ácidos Picolínicos/química , Praseodímio/química , Amidas/química , Carbono/química , Ligação de Hidrogênio , Íons , Ligantes , Metais/química , Nitrogênio/química , Oxigênio/química , Espectrofotometria , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios XRESUMO
A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.
RESUMO
The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.
RESUMO
The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.
Assuntos
Césio/química , Cloretos/química , Complexos de Coordenação/química , Inositol/química , Ribose/química , Ligação de Hidrogênio , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios XRESUMO
Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV∕90 mA H(+) beam and a 40 keV∕10 mA He(+) beam compensated by Ar∕Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.
RESUMO
Three novel lanthanum chloride-erythritol complexes (LaCl(3)·C(4)H(10)O(4)·5H(2)O (LaE(I)), LaCl(3)·C(4)H(10)O(4)·3H(2)O (LaE(II)), and LaCl(3)·1.5C(4)H(10)O(4) (LaE(III)) were synthesized and characterized by single crystal X-ray diffraction, FTIR, far-IR, THz, and Raman spectroscopy. The coordination number of La(3+) is nine. LaE(I) and LaE(II) have similar coordination spheres, but their hydrogen bond networks are different. Erythritol exhibits two coordination modes: two bidentate ligands and tridentate ligands in LaE(III). Chloride ions and water coordinate with La(3+) or participate in the hydrogen-bond networks in the three complexes. Crystal structures, FTIR, FIR, THz, and Raman spectra provide detailed information on the structures and coordination of hydroxyl groups to metal ions in the metal-carbohydrate complexes.
Assuntos
Eritritol/química , Lantânio/química , Compostos Organometálicos/síntese química , Cristalografia por Raios X , Íons/química , Modelos Moleculares , Compostos Organometálicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral RamanRESUMO
The coordination of carbohydrate to metal ions is important because it may be involved in many biochemical processes. The synthesis and characterization of several novel lanthanide-erythritol complexes (TbCl(3)·1.5C(4)H(10)O(4)·H(2)O (TbE(I)), Pr(NO(3))(3)·C(4)H(10)O(4)·2H(2)O (PrEN), Ce(NO(3))(3)·C(4)H(10)O(4)·2H(2)O (CeEN), Y(NO(3))(3)·C(4)H(10)O(4)·C(2)H(5)OH (YEN), Gd(NO(3))(3)·C(4)H(10)O(4)·C(2)H(5)OH (GdEN)) and Tb(NO(3))(3)·C(4)H(10)O(4)·C(2)H(5)OH (TbEN) are reported. The structures of these complexes in the solid state have been determined by X-ray diffraction. Erythritol is used as two bidentate ligands or as three hydroxyl group donor in these complexes. FTIR spectra indicate that two kinds of structures, with water and without water involved in the coordination sphere, were observed for lanthanide nitrate-erythritol complexes. FIR and THz spectra show the formation of metal ion-erythritol complexes. Luminescence spectra of Tb-erythritol complexes have the characteristics of the Tb ion.
Assuntos
Complexos de Coordenação/química , Eritritol/química , Elementos da Série dos Lantanídeos/química , Cristalografia por Raios X , Íons/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Two complexes of neutral D-galactitol (C(6)H(14)O(6), G) with terbium nitrate, TbGN(I) and TbGN(II), and one complex with samarium nitrate SmGN were synthesized and characterized. From IR, FIR, THz and luminescence spectra the possible coordinations were suggested, and the single-crystal X-ray diffraction results confirm the spectroscopic conclusions. In TbGN(I) (Tb(NO(3))(3)·C(6)H(14)O(6)·3H(2)O), the Tb(3+) is 9-coordinated with three water molecules and six OH groups from two D-galactitol molecules. Nitrate ions do not coordinate to metal ions, which is different from other reported lanthanide nitrate-D-galactitol complexes. In TbGN(II) and SmGN (Ln(NO(3))(3)·C(6)H(14)O(6)), Ln(3+) is 10-coordinated with six OH groups from two D-galactitol molecules and four oxygen from two bidentate nitrate ions, and one nitrate ion is hydrogen bonded. No water exists in the structures. D-Galactitol molecules provide their 1-, 2- and 3-hydroxyl groups to coordinate with one metal ion and their 4-, 5- and 6-hydroxyl groups to coordinate with another metal ion in the three structures. There is still a new topological structure that can be observed for lanthanide-d-galactitol complexes, which indicates that the coordinations between hydroxyl groups and metal ions are complicated.
Assuntos
Galactitol/química , Lantânio/química , Compostos Organometálicos/química , Análise Espectral , Cristalografia por Raios X , Medições Luminescentes , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In this paper several polycrystalline molecules with sulfonate groups and some of their metal complexes, including DL-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulphonic acid and its Co- and Ni-complexes, sulfanilic acid and L-cysteic acid were investigated using THz time-domain methods at room temperature. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2-2.7 THz (6-90 cm(-1)). THz technique can be used to distinguish different molecules with sulfonate groups and to determine the bonding of metal ions and the changes of hydrogen bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, respectively. The absorption bands of pyridine-3-sulphonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulphanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of l-cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, respectively. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of hydrogen bond networks. M-O and other vibrations appear in the FIR region for those metal-ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the molecules. Preliminary assignments of the bands were carried out using Gaussian program calculation.
Assuntos
Homocisteína/análogos & derivados , Metais/química , Ácidos Sulfônicos/química , Espectroscopia Terahertz , Cobalto/química , Cobre/química , Cristalização , Homocisteína/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Níquel/química , Piridinas/química , Espectrofotometria Infravermelho , Estrôncio/químicaRESUMO
Intermolecular hydrogen bond vibrations may be observed in the THz range. Carbohydrates are important bio-molecules, and are the typical systems for the study of hydrogen bonds. Carbohydrate derivatives have critical biological functions, and there are extensive hydrogen bond networks in molecular system, therefore, they would have various bands in the THz region. The THz absorption spectra of several carbohydrate derivatives were measured using a THz apparatus at room temperature. The THz bands are as follows: 1.17, 1.35, 1.93 and 2.23 THz for isopropyl-beta-D-thioglucopyranoside; 1.93 THz for isopropyl-beta-D- thiogalactopyranoside; 1.87 THz for methyl-(tetra-O-acetyl-beta-D-galactopyranoside); 1.23, 1.70, 1.84 and 2. 23 THz for O-(2, 3, 4, 6-tetra-O-acetyl-beta-glucopyranosyl)-N-hydroxysuccinimide. The results indicate that different samples have various bands that originated from collective modes of the whole molecules and especially isomers can be distinguished, showing that THz method is sensitive to the molecular structures and spatial configurations and is a helpful complement of IR spectroscopy.