Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Heliyon ; 10(9): e30505, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726194

RESUMO

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

2.
Small ; 20(17): e2307283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38109154

RESUMO

Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1, 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.

3.
Shanghai Kou Qiang Yi Xue ; 32(4): 369-374, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-38044729

RESUMO

PURPOSE: This study evaluated the effect of hot etching with two acid solutions on the surface topography and bond strength of zirconia. METHODS: Firstly, twenty-four pieces of zirconia with a size of 10 mm×10 mm×2 mm and 20 pieces of zirconia with a size of 3 mm×3 mm×2 mm were prepared. Then pieces were divided into four groups, and dealt with separately according to the following groups: no treatment (group A), sandblasting (group B), hot etching with HCl(group C), hot etching with HF(group D). Finally, the surface topography and bond strength were tested by atomic force microscopy(AFM), scanning electron microscope(SEM), X-ray diffraction(XRD) and universal testing machine, etc. Statistical analysis of the experimental data was performed with SPSS 26.0 software package. The final results of XRD were analyzed using MDI Jade 6 combined with Origin 2019 software. RESULTS: Groups C and D produced completely different topographical changes on the surface of zirconia than group B. Obvious interfacial cracks were observed in group B. Group D achieved the highest roughness value (78.17±4.94) nm and highest shear bond strength (25.09±4.09) MPa. CONCLUSIONS: Compared with HCl, hot etching with HF could achieve more uniform and dense porous morphology, greater roughness and shear bond strength. There were no obvious cross-section interfacial cracks and crystal phase transformations on the surface of zirconia.


Assuntos
Colagem Dentária , Animais , Ratos , Temperatura , Capsaicina , Cimentos de Resina , Mucosa Bucal , Microscopia Eletrônica de Varredura
4.
Langmuir ; 39(50): 18466-18475, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054693

RESUMO

Extremely inefficient utilization of pesticides has prompted a study of low-cost, sustainable, and smart application systems. Herein, as a promising pesticide nanocarrier, hollow mesoporous organosilica nanoparticles (HMONs) were first synthesized by using inexpensive CaCO3 nanoparticles as the hollow templates. A redox/near-infrared light dual-triggered pesticide release system was further achieved via loading avermectin (AVM) into the HMONs and coating a layer of polydopamine (PDA). The as-prepared AVM@HMONs@PDA displays a favorable pesticide load capability (24.8 wt %), outstanding photothermal performance, and high adhesion to leaves. In addition, with glutathione (GSH), the AVM cumulative release from AVM@HMONs@PDA was 3.5 times higher than that without GSH. Under ultraviolet light irradiation, the half-life of AVM@HMONs@PDA was prolonged by 17.0-fold compared to that of the AVM technical. At day 21 after treatment in the insecticidal activity, the median lethal concentrations (LC50) values displayed that the toxicity of AVM@HMONs@PDA for Panonychus citri (McGregor) was enhanced 4.0-fold compared with the commercial emulsifiable concentrate. In the field trial, at day 28 after spraying, AVM@HMONs@PDA was significantly more control effective than AVM-EC in controlling the P. citri (McGregor), even at a 50% reduced dosage. Moreover, HMONs@PDA was safe for crops. This research presents a novel preparation approach for HMONs, and it also offers a promising nanoplatform for the precise release of pesticides.


Assuntos
Nanopartículas , Praguicidas , Praguicidas/toxicidade , Nanopartículas/toxicidade , Ivermectina/toxicidade , Raios Ultravioleta
5.
Langmuir ; 39(37): 13109-13120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37672621

RESUMO

Controlled pesticide delivery systems offer many distinctive advantages over conventional pesticide formulations. In this work, degradable poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels and multifunctional PDA@PNIPAM-TA nanocomposites were prepared in a high-gravity rotating packed bed reactor (RPB) for smart pesticide delivery and release. The as-prepared microgels and nanocomposites showed reversible temperature-dependent swelling/deswelling behavior and irreversible pH-induced degradation. A dynamic contact angle test suggested that the introduction of TA and PDA into the PNIPAM matrix could enhance foliar adhesion and deposition efficiency. The nanocomposites were further used for the encapsulation and delivery of imidacloprid (IMI) to protect it from rapid photolysis and improve its pest-control efficiency. Their thermoresponsive behavior as well as pesticide loading capacity could be tuned by tailoring the PNIPAM-TA shell thickness, which could be varied by the NIPAM amount. The release rate of IMI from the core/shell nanocomposites was positively correlated with environmental temperature and near-infrared (NIR) light, which was adaptive to the positive temperature-dependent toxicity correlation of IMI and the increasing trend of pests under high temperature. The cumulative release of IMI was 23.5% at 25 °C, while it was 81.2% at 40 °C after 24 h of incubation, and the release rate was greatly enhanced under NIR irradiation. The results indicated that the facile control of pesticide release could be realized by regulating environmental conditions. This work also provides an idea for using high-gravity technology to conveniently construct a smart, effective, and environmentally friendly pesticide delivery system for sustainable crop protection.

6.
Nature ; 621(7977): 75-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673990

RESUMO

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

7.
World J Diabetes ; 14(7): 1103-1111, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37547593

RESUMO

BACKGROUND: Retinopathy is the most common microvascular disease of type 2 diabetes, and seriously threatens the life, health and quality of life of patients. It is worth noting that the development of diabetic retinopathy (DR) can be hidden, with few symptoms. Therefore, the preliminary screening of diabetic patients should identify DR as soon as possible, delay disease progression, and play a vital role in its diagnosis and treatment. AIM: To investigate the correlation between glycated hemoglobin A1c (HbA1c), urinary microalbumin (U-mALB), urinary creatinine (U-CR), mALB/U-CR ratio, ß2 microglobulin (ß2MG), retinol binding protein (RBP) and DR. METHODS: A total of 180 patients with type 2 diabetes mellitus attending the Second People's Hospital of Hefei from January 2022 to August 2022 were retrospectively enrolled by ophthalmologists. Based on whether they had combined retinopathy and its degree, 68 patients with diabetes mellitus without retinopathy (NDR) were assigned to the NDR group, 54 patients with non-proliferative DR (NPDR) to the NPDR group, and 58 patients with proliferative DR to the PDR group. General data, and HbA1c, mALB, ß2MG, RBP, mALB/U-CR and U-CR results were collected from the patients and compared among the groups. Pearson's correlation method was used to analyze the correlation between HbA1c, mALB, ß2MG, RBP, mALB/U-CR and U-CR indices, and multiple linear regression was applied to identify the risk factors for DR. Receiver operator characteristic (ROC) curves were also drawn. RESULTS: The differences in age, gender, systolic and diastolic blood pressure between the groups were not statistically significantly (P > 0.05), but the difference in disease duration was statistically significant (P < 0.05). The differences in fasting blood glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, and triglyceride between the groups were not statistically significant (P > 0.05). HbA1c in the PDR group was higher than that in the NPDR and NDR groups (P < 0.05). The levels of mALB, ß2MG, RBP, mALB/U-CR and U-CR in the PDR group were higher than those in the NPDR and NDR groups (P < 0.05). Multiple linear regression analysis showed that disease duration, HbA1c, mALB, ß2MG, RBP, mALB/U-CR and U-CR were risk factors for the development of DR. The ROC curve showed that the area under the curve (AUC) for the combination of indices (HbA1c + mALB + mALB/U-CR + U-CR + ß2MG + RBP) was 0.958, with a sensitivity of 94.83% and specificity of 96.72%, which was higher than the AUC for single index prediction (P < 0.05). CONCLUSION: HbA1c, mALB, mALB/U-CR, U-CR, ß2MG and RBP can reflect the development of DR and are risk factors affecting PDR, and the combination of these six indices has predictive value for PDR.

8.
Orphanet J Rare Dis ; 18(1): 205, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37542348

RESUMO

BACKGROUND: Primary focal hyperhidrosis (PFH) may be attributed to the up-regulation of the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) in eccrine glands. Plasminogen activator inhibitor-1 (PAI1, encoded by SERPINE1) is reported to inhibit the expression of CHRNA1, while the role of PAI1 in hyperhidrosis is unknown. METHODS: Serpine1 KO mice, Serpine1-Tg mice, and wild type BALB/c mice were intraperitoneally injected with pilocarpine hydrochloride to induce PFH. Cisatracurium (CIS, antagonist of CHRNA1) or PAI-039 (small-molecule inhibitor of PAI1) was pre-administrated before the induction of hyperhidrosis. On the other hand, Chrna1-expressing AAV was constructed and administered to Serpine1-Tg mice with hydrochloride stimulation. Hydrochloride-related biomarkers, such as acetylcholine (ACH) in the serum, calcium voltage-gated channel subunit alpha1 C (CACNA1C), and aquaporin 5 (AQP5) in sweat glands of mice were assayed with ELISA, RT-PCR, and Western blot. RESULTS: The administration of PAI-039 or Pai1 knock-out increased Chrna1 expression, sweat secretion, and hydrochloride-related biomarkers (ACH, CACNA1C, and AQP5) expression. On the other hand, CIS administration diminished the strengthened hyperhidrosis phenotype induced by Pai1 knock-out with decreased sweat gland secretion. CONCLUSION: PAI1 inhibits CHRNA1-mediated hydrochloride-induced hyperhidrosis, with decreased sweat gland secretion and diminished ACH, AQP5, and CACNA1C expression. These results indicate the potential to utilize PAI1 to alleviate PFH.


Assuntos
Hiperidrose , Glândulas Sudoríparas , Animais , Camundongos , Acetilcolina/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Biomarcadores/metabolismo , Hiperidrose/genética , Hiperidrose/metabolismo , Hiperidrose/patologia , Glândulas Sudoríparas/metabolismo , Glândulas Sudoríparas/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo
9.
Small ; 19(52): e2303848, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649216

RESUMO

The preservation and accessibility of pores are prerequisites to the application of metal-organic frameworks (MOFs). Activation is a key step to eliciting rich features of pores, but it needs a repeated solvent-exchange process which is tedious and time/cost-consuming. Herein, a facile strategy for highly-efficient activation of MOFs utilizing rotating packed bed is proposed. With the tremendous enhancement of molecular mixing and mass transfer in high-gravity and strong-shearing surrounding, nine representative MOFs are completely activated within 2 h without structural change. Compared with conventional process, this activation displays surprising efficiency by accelerating the diffusion of solvents and redissolution of residual reactants in the pores. The complete activation time can be significantly shortened by over 90%. As a proof-of-concept, the methane storage of as-activated UiO-66 is five times that of as-synthesized UiO-66. This strategy provides a potential platform with industrial worth for the activation of MOF materials with ultra-high efficiency and versatility.

10.
ACS Appl Mater Interfaces ; 15(29): 35358-35365, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449808

RESUMO

The pyrolysis of metal-organic frameworks (MOF) has been widely used approach to generate hierarchical structures with the corresponding metal, metal carbide, or metal oxide nanoparticles embedded in a porous carbon matrix with a high specific surface area for industrial catalysis, energy storage and transfer, etc. MOF-derived heterogeneous catalysts can be constructed by the encapsulation of carbon dots (CDs) with plenty of hydroxyl and amine groups to enhance the performance of the final product. Controlled formation of metallic carbon structures at the nanoscale, especially matter cycling and transformation on the nanoscale interface, is important for the production of industrial catalysts as well as the research of materials science and engineering progress. However, the mass transfer at the nanoscale during the processing of MOF pyrolysis remains less understood due to the lack of direct observation. Herein, by using in situ environmental transmission electron microscopy, real-time imaging and quantitative evolution of porous carbon decorated with metal species by the pyrolysis of CDs-encapsulated zeolitic imidazolate framework-67 are achieved. The migration of Co, the flow of aggregates, and the growth of carbon nanotubes observed in the nanoscale pyrolysis laboratory working at 600 °C with an air atmosphere are present. Experimental studies based on reduction and oxidation reaction models reveal that the synergistic effect between doped graphite nitrogen and confined Co nanoparticles is beneficial for boosting catalytic performance.

11.
Open Life Sci ; 18(1): 20220645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465103

RESUMO

The value of CT-guided puncture with methylene blue mixed with autologous blood in preoperative localization of pulmonary nodules and masses was explored. A total of 113 patients with 146 nodules and masses were treated with methylene blue mixed with autologous blood for preoperative localization and thoracoscopic surgery in the Department of Thoracic Surgery, the First Affiliated Hospital of Fujian Medical University between October 2021 and October 2022. The localization effect, complications, and pathological conditions were observed. The localization success rate was 98.63% (144/146). The localization failed nodules and masses could still be located by looking for needle eyes and reading films. The whole group successfully completed thoracoscopic surgery. The average interval of operation after puncture was 22.16 ± 6.22 h. There was a small amount of suspicious hemothorax after puncture. There was no pneumothorax after puncture in the whole group. There were no hemoptysis, irritating dry cough, and other reactions. The overall complication rate was 2.65%, and no special treatment was given. It is safe and effective to use methylene blue mixed with autologous blood for CT-guided preoperative puncture and localization of small pulmonary nodules and masses.

13.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838824

RESUMO

(E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (1) and (Z)-7-Phenyl-2-hepten-4,6-diyn-1-ol (2) are isomeric natural polyacetylenes isolated from the Chinese medicinal plant Bidens pilosa L. This study first revealed the excellent anti-metastasis potential of these two polyacetylenes on human gastric cancer HGC-27 cells and the distinctive molecular mechanisms underlying their activities. Polyacetylenes 1 and 2 significantly inhibited the migration, invasion, and adhesion of HGC-27 cells at their non-toxic concentrations in a dose-dependent manner. The results of a further mechanism investigation showed that polyacetylene 1 inhibited the expressions of Vimentin, Snail, ß-catenin, GSK3ß, MST1, YAP, YAP/TAZ, and their phosphorylation, and upregulated the expression of E-cadherin and p-LATS1. In addition, the expressions of various downstream metastasis-related proteins, such as MMP2/7/9/14, c-Myc, ICAM-1, VCAM-1, MAPK, p-MAPK, Sox2, Cox2, and Cyr61, were also suppressed in a dose-dependent manner. These findings suggested that polyacetylene 1 exhibited its anti-metastasis activities on HGC-27 cells through the reversal of the EMT process and the suppression of the Wnt/ß-catenin and Hippo/YAP signaling pathways.


Assuntos
Bidens , Neoplasias Gástricas , Humanos , beta Catenina/metabolismo , Polímero Poliacetilênico , Via de Sinalização Hippo , Poli-Inos , Via de Sinalização Wnt
14.
Adv Wound Care (New Rochelle) ; 12(8): 453-466, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36047821

RESUMO

Objective: This study sought to quantify the pooled effects of lidocaine patch (LP) on postoperative pain and side effects through a comprehensive review and meta-analysis. Approach: The study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), AMSTAR, and the Cochrane Collaboration. Randomized controlled trials comparing LP with placebo were retrieved from five electronic databases. Primary outcome in the study was cumulative intravenous morphine equivalent consumption (mg) within 24 h postoperatively. Results: Twelve trials comprising 617 patients were included in the final analysis. Primary result indicated that the analgesic effects LP were only statistical but not clinically significant of postoperative intravenous morphine consumption within 24 h (mean difference, -4.61 mg; 95% confidence interval, -8.09 to -1.14). Interestingly, the results of subgroup and meta-regression analysis indicated that preoperative administration of LP had potential advantages in postoperative wound pain management. It is also worthwhile to mention that LP provided a clinically important benefit in rest pain scores within 24-h postoperatively. Apart from these, other secondary outcome analysis did not uncover any particularly significant analgesic or safety advantages to LP. Finally, LP also does not increase the risk of any local anesthetic-related side effects. Innovation: This systematic review and meta-analysis provides moderate-to-high quality evidence undermining the role of LP for management of acute postoperative wound pain after surgical procedures and the justification for the associated extra costs. Conclusion: Taken together, the current evidence does not support LP as part of a routine multimodal analgesia strategy to alleviate early postoperative acute pain. However, further studies should explore the clinical value of preoperative administration and the long-term effect of LP.


Assuntos
Anestésicos Locais , Dor Pós-Operatória , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Dor Pós-Operatória/tratamento farmacológico , Lidocaína/uso terapêutico , Derivados da Morfina/uso terapêutico
15.
Int Wound J ; 20(5): 1476-1490, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36330591

RESUMO

The adjuvant effectiveness of nalbuphine in context of brachial plexus block (BPB) in patients undergoing upper-limb orthopaedic trauma surgery has remained uncertain. The purpose of this meta-analysis was to evaluate the analgesic benefit of mixing nalbuphine into local anaesthetics in BPB for wound pain from upper-limb trauma surgery. Primary outcome was the duration of analgesia. Seventeen trials (1104 patients) were analysed. Patients receiving nalbuphine have an increased weighted mean difference (WMD) 95% confidence interval of the duration of analgesia by 186.91 minutes (133.67 to 240.16) (P < 0.001). Compared to placebo, nalbuphine shorten the onset time of sensory and motor block by WMD of 2.59 (1.27 to 3.92) and 3.06 minutes (1.65 to 4.48) (P < 0.001), respectively. Meanwhile, nalbuphine prolonged the durations of sensory and motor block (P < 0.001). Qualitative and quantitative synthesis revealed no differences with regard to the outcomes related to side-effects. There is moderate-quality evidence that the addition of nalbuphine to local anaesthetics for BPB in patients undergoing upper-limb orthopaedic trauma surgery significantly prolongs the duration of analgesia, while preserving a similar safety-profile compared with local anaesthetics alone. However, these benefits should be further weighed against nalbuphine-related neurological safety in future studies.


Assuntos
Nalbufina , Ortopedia , Humanos , Anestésicos Locais , Dor , Extremidade Superior/cirurgia
16.
Lasers Med Sci ; 38(1): 4, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538140

RESUMO

The effects of Er:YAG laser with different frequencies on zirconia ceramic's bonding properties were studied. In total, 42 Y-TZP (yttrium-stabilized tetragonal zirconia polycrystals, UPCERA ST) with 3 mm × 3 mm × 2 mm divided into 6 groups (n = 7): control (C), sandblasting (SB), and Er:YAG laser (A1-A4), which the frequencies correspond to 5 Hz, 10 Hz, 15 Hz, and 20 Hz, IPS e.max Press ceramics were B. Scanning electron microscope (SEM) images were recorded. The ceramics were bonded to enamel from extracted teeth. After being constantly stored at 37 ℃ for 24 h, the shear test was performed with a universal testing machine. Stereomicroscope evaluated fracture modes. Stereomicroscope evaluated fracture modes. Data were analyzed by SPSS26.0 statistical software; the standard was P = 0.05. (1) The SEM showed the surface of A1-A4 became rough compared with C. (2) The shear test showed that the highest bonding strength for B was 13.15 ± 2.97 MPa, followed by SB was 7.78 ± 0.97 MPa, and A2 was 7.13 ± 0.75 MPa. However, there was no significant difference between SB and A2 (P > 0.05). Fracture modes of C were the interface fracture of Y-TZP and resin adhesive; most of A1-A4 and SB also were interface fracture, a few mixed fractures, and cohesion fracture of resin adhesive; B were all mixed fracture. Er:YAG laser with 10 Hz could be used as an alternative to sandblasting with Al2O3 for surface modification of Y-TZP to increase the bonding strength.


Assuntos
Colagem Dentária , Lasers de Estado Sólido , Lasers de Estado Sólido/uso terapêutico , Teste de Materiais , Resistência ao Cisalhamento , Propriedades de Superfície , Cerâmica/química , Zircônio/química , Microscopia Eletrônica de Varredura , Cimentos de Resina/química
17.
Nano Lett ; 22(17): 6958-6963, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037446

RESUMO

The kinetics of mass transfer in a stagnant fluid layer next to an interface govern numerous dynamic reactions in diffusional micro/nanopores, such as catalysis, fuel cells, and chemical separation. However, the effect of the interplay between stagnant liquid and flowing fluid on the micro/nanoscopic mass transfer dynamics remains poorly understood. Here, by using liquid cell transmission electron microscopy (TEM), we directly tracked microfluid unit migration at the nanoscale. By tracking the trajectories, an unexpected mass transfer phenomenon in which fluid units in the stagnant liquid layer migrated two orders faster during gas-liquid interface updating was identified. Molecular dynamics (MD) simulations indicated that the chemical potential difference between nanoscale liquid layers led to convective flow, which greatly enhanced mass transfer on the surface. Our study opens up a pathway toward research on mass transfer in the surface liquid layers at high spatial and temporal resolutions.


Assuntos
Nanoporos , Difusão , Cinética , Microfluídica , Microscopia Eletrônica de Transmissão
18.
ACS Appl Mater Interfaces ; 14(22): 25374-25384, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623040

RESUMO

Efficient separation of the CH4/N2 mixture is of great significance for coalbed methane purification. It is an effective strategy to separate this mixture by tuning the van der Waals interaction due to the nonpolar properties of CH4 and N2 molecules. Herein, we prepared several isoreticular Al-based metal-organic frameworks (MOFs) with different ligand sizes and polarities because of their high structural stability and low cost/toxicity feature of Al metal. Adsorption experiments indicated that the CH4 uptake, Qst of CH4, and CH4/N2 selectivity are in the order of Al-FUM-Me (27.19 cm3(STP) g-1, 24.06 kJ mol-1 and 8.6) > Al-FUM (20.44 cm3(STP) g-1, 20.60 kJ mol-1 and 5.1) > Al-BDC (15.98 cm3(STP) g-1, 18.81 kJ mol-1 and 3.4) > Al-NDC (10.86 cm3(STP) g-1, 14.89 kJ mol-1 and 3.1) > Al-BPDC (5.90 cm3(STP) g-1, 11.75 kJ mol-1 and 2.2), confirming the synergetic effects of pore sizes and pore surface polarities. Exhilaratingly, the ideal adsorbed solution theory selectivity of Al-FUM-Me is higher than those of all zeolites, carbon materials, and most water-stable MOF materials (except Al-CDC and Co3(C4O4)2(OH)2), which is comparable to MIL-160. Breakthrough results demonstrate its excellent separation performance for the CH4/N2 mixture with good regenerability. The separation mechanism of Al-FUM-Me for the CH4/N2 mixture was elucidated by theoretical calculations, showing that the stronger affinity of CH4 can be attributed to its relatively shorter interaction distance with adsorption binding sites. Therefore, this work not only offers a promising candidate for CH4/N2 separation but also provides valuable guidance for the design of high-performance adsorbents.

19.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458629

RESUMO

Nigrosporins B, an anthraquinone derivative obtained from the secondary metabolites of marine fungus Nigrospora oryzae. In this study, we characterized the distinctive anti-cancer potential of Nigrosporins B in vitro and underlying molecular mechanisms in human cervical cancer Ca Ski cells for the first time. The results of MTT assay showed that Nigrosporins B significantly inhibited the proliferation of multiple tumor cells in a dose-dependent manner, especially for the Ca Ski cells with an IC50 of 1.24 µM. Nigrosporins B exerted an apoptosis induction effect on Ca Ski cells as confirmed by flow cytometry, AO/EB dual fluorescence staining, mitochondrial membrane potential analysis and western blot assay. In addition, Nigrosporins B induced obvious autophagy accompanied with the increase of autophagic vacuoles and the acceleration of autophagic flux as indicated by Cyto-ID staining, mRFP-GFP-LC3 adenovirus transfection and western blot analysis. Interestingly, the combination of Nigrosporins B with the three autophagy inhibitors all significantly enhanced the cytotoxicity of Nigrosporins B on Ca Ski cells, indicating that the autophagy induced by Nigrosporins B might protect Ca Ski cells from death. Furthermore, we found that Nigrosporins B inhibited the phosphorylation of PI3K, AKT, mTOR molecules and increased the protein expression levels of PTEN and p-AMPKα in a dose-dependent manner, suggesting that Nigrosporins B induced apoptosis and protective autophagy through the suppression of the PI3K/AKT/mTOR signaling pathway. Together, these findings revealed the anti-cervical cancer effect of Nigrosporins B and the underlying mechanism of action in Ca Ski cells, it might be as a promising alternative therapeutic agent for human cervical cancer.


Assuntos
Antraquinonas , Fosfatidilinositol 3-Quinases , Neoplasias do Colo do Útero , Feminino , Humanos , Antraquinonas/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
20.
Chemosphere ; 297: 134215, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248597

RESUMO

In this work, a desulfurization method using natural amino acid salts (AAS), which can be green prepared by biological fermentation, is proposed to remove H2S from raw biogas. Biogas purification and fertilizer production can be simultaneously achieved to close sulfur recycle. The reaction kinetic characteristics of H2S absorption with three kinds of AAS, including potassium ß-alaninate (PA), potassium sarcosinate (PS) and potassium l-prolinate (PP) are first studied. Kinetic parameters including orders of reaction, rate constants, pre-exponential factors and activation energies are given. AAS absorbent exhibits good potential for biogas desulfurization. Higee (high gravity) technology is utilized to intensify H2S removal. The effects of operating conditions on H2S removal efficiency are investigated and PP shows the best desulfurization performance. The phytotoxicity of AAS and amino acid salt sulfide (AASS) is assessed by the germination index of mungbean seeds. PP and its salt sulfide (PPS) show relatively low phytotoxicity and their allowable agricultural feeding concentrations are below 0.08 M and 0.04 M, respectively. The desulfurization method demonstrates a green route for biogas purification to achieve sulfur recycle.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Aminoácidos , Reatores Biológicos , Sulfeto de Hidrogênio/química , Potássio , Sais , Sulfetos , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA